WO1992001245A1 - Electrostatic dry toners containing degradable resins - Google Patents

Electrostatic dry toners containing degradable resins Download PDF

Info

Publication number
WO1992001245A1
WO1992001245A1 PCT/US1991/004242 US9104242W WO9201245A1 WO 1992001245 A1 WO1992001245 A1 WO 1992001245A1 US 9104242 W US9104242 W US 9104242W WO 9201245 A1 WO9201245 A1 WO 9201245A1
Authority
WO
WIPO (PCT)
Prior art keywords
units
toner
resin
paper
electrostatic
Prior art date
Application number
PCT/US1991/004242
Other languages
French (fr)
Inventor
Neville Everton Drysdale
Thomas Michael Ford
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to JP3512608A priority Critical patent/JPH06502926A/en
Publication of WO1992001245A1 publication Critical patent/WO1992001245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants

Definitions

  • This invention relates to dry electrostatic toners having improved properties. More particularly, this invention relates to toners containing a degradable polymeric resin.
  • a latent electrostatic image can be developed with toner particles.
  • a latent electrostatic image may be produced by providing a photo-conductive layer with a uniform electrostatic charge and subsequently discharging the electrostatic charge by exposing it to a modulated beam of radiant energy.
  • Other methods are known for forming latent electrostatic images. For example, one method is providing a carrier with a dielectric surface and transferring a preformed electrostatic charge to the surface.
  • Useful toners comprise a thermoplastic resin and a suitable colorant such as a dye or pigment.
  • the colored toner particles are normally less than 10 Um average size as measured by a Malvern 3600E laser diffraction light scattering particle analyzer. It has also been found desirable to add to toners a charge director compound.
  • U. S. Patent Nos. 4, 925, 764 and 765 Madeleine (1990) are directed to excellent charge director compounds and their manufacture.
  • Other prior art charge director compounds are also disclosed in columns l and 2 of these patents. These Madeleine patents and the prior art patents recited in columns l and 2 thereof are hereby incorporated herein by reference. They provide relevant background for the present invention. Because of environmental concerns, recycling of used paper is becoming ever more important.
  • an electrostatic toner for printing having improved degradability compatible with the recycling of printed paper, comprising particles of a degradable resin.
  • the toners of this invention comprise particles of a polymeric resin containing at least one unit selected from the group consisting of: (1) (0(CRlR2) n CO) p (2) (0CRlR 2 C00CRlR2C0) q
  • n is a whole number 2, 4 & 5, the total of p, q, r, s and t being 50 to about 5,000, and Rl and R2, which can be the same or different, are hydrogen, hydrocarbyl containing 1 to 12 carbon atoms, or substituted hydrocarbyl containing 1 to 12 carbon atoms, the resin particles having an average by area particle size of less than 10 Um.
  • the preferred toners of this invention comprise degradable polymeric resins selected from the - 3 - group consisting of homopolymer of any of units (1) to (5) , block or random copolymers of at least two units of (1) to (5) , blends of homopolymers of any of units (1) to (5) , block or random copolymers of at least two units of (1) to (5) , and combinations thereof.
  • Preferable polymeric resins are those wherein Rl and R2 are independently hydrogen or methyl.
  • the most preferable resins are those that contain polylactic acid units. Desirably, at least 50% of the polymeric content of the resin is polylactic acid units.
  • especially preferred units are epsilon-caprolactone, delta-valerolactone, lactide(3,6-dimethyl-l,4-dioxan- 2,5-dione), glycolid(l,4-dioxan-2,5-dione) , l,5-dioxepan-2-one, l,4-dioxan-2-one, beta-butyrolac- tone and beta-propylactone.
  • the polymers may be synthesized by polymeri ⁇ zation directly from the acid precursors, or by poly ⁇ merization of cyclic monomeri ⁇ or dimeri ⁇ (depending on the acid type) lactone. Polymerization from the cyclic lactone is preferred for producing high molecular weight polymers because equilibrium reactions with the intermediate, cyclic dimer and low molecular weight species place practical limits on the molecular weight of polymers produced directly from the hydroxy acid.
  • the polymeric resins of this invention have weight average molecular weights from about 400 to about 600,000, preferably 100,000 to 450,000.
  • degradable means that the polymeric resin component of the developer is biodegradable, for example in landfills, but more importantly is hydrolysable by exposure to aqueous conditions.
  • the degradation rate is consistent with its intended usage, i.e., the product does not degrade significantly in normal storage and use, but will degrade in a reasonable time after discarding.
  • hydrolysis degradation is dependent on the degree of crystallinity; higher crystallinity polymers degrade more slowly.
  • For hydrolysis preferably slightly basic or acidic, whereupon the polymeric resin is hydrolyzed to monomeric or low molecular weight units that are suitable for recycle reuse to prepare polymer.
  • the polymeric resins have the ability to disperse a colorant, e.g., pigment, etc.; and the ability to be ground to form particles between 0.1 Um and 10 Um, average by area size.
  • colorants such as pigments or dyes and combinations thereof.
  • the colorant e.g., a pigment, may be present in the amount of up to about 60 percent by weight based on the total weight of solid toner, preferably 0.01 to 30% by weight based on the total weight of toner.
  • the amount of colorant may vary depending on the use of the developer.
  • ingredients may be added to the electrostatic toner, such as fine particle size oxides, e.g., silica, alumina, titania, etc.; preferably in the order of 0.5 Um or less can be dispersed into the liquified resin. These oxides can be used instead of the colorant or in combination with the colorant. Metal particles may also be added. Also, one or more charge enhancing substances, such as those disclosed in the aforementioned Madeleine patents, may be added. Plasticizers in small amounts, such as lactides or lactic oligomers, may sometimes be desirable.
  • One method is to melt blend the resin, the pigment and the charge control agent, followed by mechanical attrition.
  • a solvent dispersion of a resin, pigment and charge control agent are spray dried under controlled conditions, thereby resulting in the desired product.
  • a toner prepared in this manner results in a positively charged toner in relationship to the carrier materials used.
  • the electrostatic toners of this invention demonstrate good image quality, and are useful in copying, e.g., making office copies of black and white s well as various colors; or color proofing, e.g., a reproduction of an image using the standard colors: yellow, cyan, magenta together with black as desired.
  • copying and proofing the toner particles are applied to a latent electrostatic image.
  • the developers of this invention are biodegradable and more importantly degradable by hydrolysis, which removes the ink and breaks down the resin to units that can be isolated easily and reconverted to polymeric resin. Paper printed with these developers can be processed by standard paper recycle treatment without leaving a gray or spotted discoloration to the recycled paper made therefrom.
  • Diano S-4 or TB1C 5. Measure brightness and dirt count. Obtain ISO and GE brightness measurements, as well as *L*a*b color readings.
  • S-lactide (7.60 g) is weighed in a 100 ml. RB flask equipped with a stirring bar. Methylene chloride (40 ml.) is added. To the stirred solution, under argon, dysprosium tris(2-N,N-dimethyl- a inoethoxide) (1.0 ml. of a 0.1 M solution in toluene) is added. After approximately twenty-one hours, the polymerization is terminated with 50 ml. of 5% HCl. Additional methylene chloride is added and the organic phase separated and washed again with 5% HCl (1 x 50 ml.), then with 50 ml.
  • a toner composition is prepared by melt blending followed by mechanical attrition 10 parts of Black Pearl carbon black with 90 parts of this polyla ⁇ tide. Three parts of the above toner and 97 parts of an uncoated ferrite carrier are blended into a developer composition. The developer composition is then roll milled. After rill milling the triboelectri ⁇ charge on the tone is measured using a vertex model T-lOO Triboelectric Tester. Tribotester measurements are made by loading the developer composition into a Faraday cage and using a stream of air to remove charged particles that are finer than the cage screen. The opposite net charge remaining on the developer composition is neutralized and measured. The polymer is found to charge the toner negatively.

Abstract

An electrostatic toner for printing having improved degradability compatible with the recycling of printed paper. The high degradability is imparted by using a degradable polymer as a binding resin. Degradability results primarily from biodegradation and/or hydrolysis.

Description

___ _-
TITLE ELECTROSTATIC DRY TONERS CONTAINING DEGRADABLE RESINS
DESCRIPTION TECHNICAL FIELD
This invention relates to dry electrostatic toners having improved properties. More particularly, this invention relates to toners containing a degradable polymeric resin.
BACKGROUND A T It is known that a latent electrostatic image can be developed with toner particles. A latent electrostatic image may be produced by providing a photo-conductive layer with a uniform electrostatic charge and subsequently discharging the electrostatic charge by exposing it to a modulated beam of radiant energy. Other methods are known for forming latent electrostatic images. For example, one method is providing a carrier with a dielectric surface and transferring a preformed electrostatic charge to the surface.
Useful toners comprise a thermoplastic resin and a suitable colorant such as a dye or pigment. The colored toner particles are normally less than 10 Um average size as measured by a Malvern 3600E laser diffraction light scattering particle analyzer. It has also been found desirable to add to toners a charge director compound. U. S. Patent Nos. 4, 925, 764 and 765 Madeleine (1990) are directed to excellent charge director compounds and their manufacture. Other prior art charge director compounds are also disclosed in columns l and 2 of these patents. These Madeleine patents and the prior art patents recited in columns l and 2 thereof are hereby incorporated herein by reference. They provide relevant background for the present invention. Because of environmental concerns, recycling of used paper is becoming ever more important. However, paper printed with toners has been found to be greatly unacceptable for making quality recycled paper because the toner printing contaminates the recycled paper product. Toners are particularly difficult to remove from paper because the conventional resin is melt-fused and so very tightly bonded. Even after de-inking, the residual toner imparts to recycled paper a gray cast and also a black spotted appearance.
SUMMARY OF THE INVENTION In accordance with this invention there is provided an electrostatic toner for printing having improved degradability compatible with the recycling of printed paper, comprising particles of a degradable resin.
DETAILED DESCRIPTION OF THE INVENTION
The toners of this invention comprise particles of a polymeric resin containing at least one unit selected from the group consisting of: (1) (0(CRlR2)nCO)p (2) (0CRlR2C00CRlR2C0)q
(3) (OCRl 2CRlR2θCR*lR2cθ) r
(4 ) (OCR1R2CR1R20CR1R2CR1R2CO) S and
(5) (NH (CRlR2) nCO) t wherein n is a whole number 2, 4 & 5, the total of p, q, r, s and t being 50 to about 5,000, and Rl and R2, which can be the same or different, are hydrogen, hydrocarbyl containing 1 to 12 carbon atoms, or substituted hydrocarbyl containing 1 to 12 carbon atoms, the resin particles having an average by area particle size of less than 10 Um.
The preferred toners of this invention comprise degradable polymeric resins selected from the - 3 - group consisting of homopolymer of any of units (1) to (5) , block or random copolymers of at least two units of (1) to (5) , blends of homopolymers of any of units (1) to (5) , block or random copolymers of at least two units of (1) to (5) , and combinations thereof.
Preferable polymeric resins are those wherein Rl and R2 are independently hydrogen or methyl. The most preferable resins are those that contain polylactic acid units. Desirably, at least 50% of the polymeric content of the resin is polylactic acid units. Also, especially preferred units are epsilon-caprolactone, delta-valerolactone, lactide(3,6-dimethyl-l,4-dioxan- 2,5-dione), glycolid(l,4-dioxan-2,5-dione) , l,5-dioxepan-2-one, l,4-dioxan-2-one, beta-butyrolac- tone and beta-propylactone.
The polymers may be synthesized by polymeri¬ zation directly from the acid precursors, or by poly¬ merization of cyclic monomeriσ or dimeriσ (depending on the acid type) lactone. Polymerization from the cyclic lactone is preferred for producing high molecular weight polymers because equilibrium reactions with the intermediate, cyclic dimer and low molecular weight species place practical limits on the molecular weight of polymers produced directly from the hydroxy acid.
The polymeric resins of this invention have weight average molecular weights from about 400 to about 600,000, preferably 100,000 to 450,000.
Throughout the specification the term degradable means that the polymeric resin component of the developer is biodegradable, for example in landfills, but more importantly is hydrolysable by exposure to aqueous conditions. The degradation rate is consistent with its intended usage, i.e., the product does not degrade significantly in normal storage and use, but will degrade in a reasonable time after discarding. As is known in the art, hydrolysis degradation is dependent on the degree of crystallinity; higher crystallinity polymers degrade more slowly. For hydrolysis preferably slightly basic or acidic, whereupon the polymeric resin is hydrolyzed to monomeric or low molecular weight units that are suitable for recycle reuse to prepare polymer.
In addition to degradability, the polymeric resins have the ability to disperse a colorant, e.g., pigment, etc.; and the ability to be ground to form particles between 0.1 Um and 10 Um, average by area size.
As indicated above, additional components that can be present in the electrostatic toner are colorants, such as pigments or dyes and combinations thereof. The colorant, e.g., a pigment, may be present in the amount of up to about 60 percent by weight based on the total weight of solid toner, preferably 0.01 to 30% by weight based on the total weight of toner. The amount of colorant may vary depending on the use of the developer.
Other ingredients may be added to the electrostatic toner, such as fine particle size oxides, e.g., silica, alumina, titania, etc.; preferably in the order of 0.5 Um or less can be dispersed into the liquified resin. These oxides can be used instead of the colorant or in combination with the colorant. Metal particles may also be added. Also, one or more charge enhancing substances, such as those disclosed in the aforementioned Madeleine patents, may be added. Plasticizers in small amounts, such as lactides or lactic oligomers, may sometimes be desirable.
Numerous methods may be employed to produce the toner of the present invention. One method is to melt blend the resin, the pigment and the charge control agent, followed by mechanical attrition.
Other methods include those well known in the art such as spray drying and dispersion polymerization. For example, a solvent dispersion of a resin, pigment and charge control agent are spray dried under controlled conditions, thereby resulting in the desired product. Such a toner prepared in this manner results in a positively charged toner in relationship to the carrier materials used.
The electrostatic toners of this invention demonstrate good image quality, and are useful in copying, e.g., making office copies of black and white s well as various colors; or color proofing, e.g., a reproduction of an image using the standard colors: yellow, cyan, magenta together with black as desired. In copying and proofing, the toner particles are applied to a latent electrostatic image. A major advance in the art is that the developers of this invention are biodegradable and more importantly degradable by hydrolysis, which removes the ink and breaks down the resin to units that can be isolated easily and reconverted to polymeric resin. Paper printed with these developers can be processed by standard paper recycle treatment without leaving a gray or spotted discoloration to the recycled paper made therefrom.
For determining the recyclability and the nature of recyclable paper made from paper printed with the toner of the present invention, the following test procedure, which is consistent with TAPPI Standards, may be used:
1. Cut 100 grams printed paper into 1/4" squares
Repulp in lab repulper, in the presence of bleach liquor for 30 minutes at 50oC Bleach liquor
* 95% liquor * 5% paper by weight
* 1 gram NaOH by weight on paper * 3 grams sodium silicate by weight on paper
* 1 gram calcium carbonate
* trace fatty acid soaps * 2 liters Dl water
2. Digest for 1 hour at 40°C, without agitation
3. Isolate paper via course screening, flotation and washing 4. Prepare 3 grams handsheets - for TAPPI
Diano S-4 or TB1C 5. Measure brightness and dirt count. Obtain ISO and GE brightness measurements, as well as *L*a*b color readings.
EXAMPLE Polymerization of S-Lactide with Dysprosium Tris(2-N,N-dimethylaminoethoxide) .
In a dry box, S-lactide (7.60 g) is weighed in a 100 ml. RB flask equipped with a stirring bar. Methylene chloride (40 ml.) is added. To the stirred solution, under argon, dysprosium tris(2-N,N-dimethyl- a inoethoxide) (1.0 ml. of a 0.1 M solution in toluene) is added. After approximately twenty-one hours, the polymerization is terminated with 50 ml. of 5% HCl. Additional methylene chloride is added and the organic phase separated and washed again with 5% HCl (1 x 50 ml.), then with 50 ml. of 5% sodium bicarbonate and finally with water (3 x 50 ml.). After drying over anhydrous sodium sulfate and filtration, the organic phase is concentrated via rotoevaporation. The polymer is precipitated in hexanes and dried under vacuum. Yield: 5.15 g (67.7%). GPC analysis: Mn - 70700, Mw = 82,900, PD - 1.17 (PET STD.) .
The above polymer (1.02 g) and dichloromethane (10 ml.) are added to an oven dried 100 ml. RB flask. To this stirred solution, 0.5 g anhydrous sodium sulfate and 0.5 ml. of dimethyl sulfate are added. After one and a half hours the sodium sulfate is filtered off and the resulting solution added to hexanes. The precipitated polymer is filtered and dried in vacuo. Yield: 0.7 g (70%); 1H NMR (CDCI3) 3.4 (s, Mβ3N+) .
Preparing the toner. A toner composition is prepared by melt blending followed by mechanical attrition 10 parts of Black Pearl carbon black with 90 parts of this polylaσtide. Three parts of the above toner and 97 parts of an uncoated ferrite carrier are blended into a developer composition. The developer composition is then roll milled. After rill milling the triboelectriσ charge on the tone is measured using a vertex model T-lOO Triboelectric Tester. Tribotester measurements are made by loading the developer composition into a Faraday cage and using a stream of air to remove charged particles that are finer than the cage screen. The opposite net charge remaining on the developer composition is neutralized and measured. The polymer is found to charge the toner negatively.

Claims

CLAIMSWhat is claimed is:
1. A toner composition comprising degradable polyhydroxy acid binder resin containing at least one hydroxy acid selected from the group consisting of:
(1) (0(CRlR2)nCO)p
(2) (OCR1R2COOCRiR2cθ)q (3) (OCR1R2CRlR2θCR1R2cθ)r
(4) (OC 1R2CR1 20CR1R2CR1R2CO)S and
(5) (NH(CRlR2)nC0)t wherein n is a whole number 2, 4 & 5, the total of p, q, r, s and t being 50 to about 5,000, and R- or R2, which can be the same or different, are hydrogen, hydrocarbyl containing 1 to 12 carbon atoms, or substituted hydrocarbyl containing 1 to 12 carbon atoms; the resin particles having an average by area particle size of less than 10 Um.
2. A composition according to Claim 1 wherein the resins are selected from the group consisting of homopolymer of any of units (1) to (5) , block or random copolymers of at least two units of (1) to (5) , blends of homopolymers of any of units (1) to (5) , block or random copolymers of at least two units of (1) to (5) , and combinations thereof.
3. A composition according to Claim 1 wherein R- and R2 are independently selected from the group consisting of hydrogen and methyl.
4. A composition according to Claim .1 wherein the resin contains at least 50% of polylactic acid units.
PCT/US1991/004242 1990-07-13 1991-06-21 Electrostatic dry toners containing degradable resins WO1992001245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3512608A JPH06502926A (en) 1990-07-13 1991-06-21 Electrostatic dry toner containing degradable resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55228790A 1990-07-13 1990-07-13
US552,287 1990-07-13

Publications (1)

Publication Number Publication Date
WO1992001245A1 true WO1992001245A1 (en) 1992-01-23

Family

ID=24204698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/004242 WO1992001245A1 (en) 1990-07-13 1991-06-21 Electrostatic dry toners containing degradable resins

Country Status (8)

Country Link
JP (1) JPH06502926A (en)
CN (1) CN1058279A (en)
AU (1) AU8285091A (en)
IE (1) IE912436A1 (en)
MX (1) MX9100181A (en)
NZ (1) NZ238921A (en)
PT (1) PT98299A (en)
WO (1) WO1992001245A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615166A1 (en) * 1993-02-26 1994-09-14 MITSUI TOATSU CHEMICALS, Inc. Resins for electrophotographic toners
EP0640882A1 (en) * 1993-08-30 1995-03-01 Tomoegawa Paper Co. Ltd. Toner for electrophotography and process for the production thereof
US5667927A (en) * 1993-08-30 1997-09-16 Shimadu Corporation Toner for electrophotography and process for the production thereof
US5851718A (en) * 1995-07-14 1998-12-22 Mitsubishi Chemical Corporation Toner for electrostatic image development by heat
EP1107069A1 (en) * 1999-12-10 2001-06-13 Tomoegawa Paper Co. Ltd. Toner for electrophotography

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473252B2 (en) * 2008-06-02 2014-04-16 株式会社リコー Toner, developer, and image forming method
KR101191000B1 (en) 2008-07-01 2012-10-16 가부시키가이샤 리코 Image forming toner, image forming apparatus, image forming method, and process cartridge
JP7183605B2 (en) * 2018-07-25 2022-12-06 コニカミノルタ株式会社 Foil stamping system for printed matter, foil stamping control method and foil stamping control program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974078A (en) * 1971-12-30 1976-08-10 Xerox Corporation Electrostate graphic development of encapsulated materials
US4104066A (en) * 1976-03-01 1978-08-01 Xerox Corporation Cold pressure fix toners from polycaprolactone
US4105572A (en) * 1976-03-31 1978-08-08 E. I. Du Pont De Nemours And Company Ferromagnetic toner containing water-soluble or water-solubilizable resin(s)
US4855209A (en) * 1987-12-04 1989-08-08 Xerox Corporation Low melting encapsulated toners
US4978596A (en) * 1985-03-25 1990-12-18 Hitachi, Ltd. Electrophotographic toner comprising lactone-modified epoxy resin
US5004664A (en) * 1989-02-27 1991-04-02 Xerox Corporation Toner and developer compositions containing biodegradable semicrystalline polyesters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974078A (en) * 1971-12-30 1976-08-10 Xerox Corporation Electrostate graphic development of encapsulated materials
US4104066A (en) * 1976-03-01 1978-08-01 Xerox Corporation Cold pressure fix toners from polycaprolactone
US4105572A (en) * 1976-03-31 1978-08-08 E. I. Du Pont De Nemours And Company Ferromagnetic toner containing water-soluble or water-solubilizable resin(s)
US4978596A (en) * 1985-03-25 1990-12-18 Hitachi, Ltd. Electrophotographic toner comprising lactone-modified epoxy resin
US4855209A (en) * 1987-12-04 1989-08-08 Xerox Corporation Low melting encapsulated toners
US5004664A (en) * 1989-02-27 1991-04-02 Xerox Corporation Toner and developer compositions containing biodegradable semicrystalline polyesters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615166A1 (en) * 1993-02-26 1994-09-14 MITSUI TOATSU CHEMICALS, Inc. Resins for electrophotographic toners
US5387665A (en) * 1993-02-26 1995-02-07 Mitsui Toatsu Chemicals, Inc. Resins for electrohotographic toners
EP0640882A1 (en) * 1993-08-30 1995-03-01 Tomoegawa Paper Co. Ltd. Toner for electrophotography and process for the production thereof
US5667927A (en) * 1993-08-30 1997-09-16 Shimadu Corporation Toner for electrophotography and process for the production thereof
US5851718A (en) * 1995-07-14 1998-12-22 Mitsubishi Chemical Corporation Toner for electrostatic image development by heat
EP1107069A1 (en) * 1999-12-10 2001-06-13 Tomoegawa Paper Co. Ltd. Toner for electrophotography
US6432600B2 (en) 1999-12-10 2002-08-13 Tomoegawa Paper Co., Ltd. Toner for electrophotography

Also Published As

Publication number Publication date
MX9100181A (en) 1992-02-28
JPH06502926A (en) 1994-03-31
IE912436A1 (en) 1992-01-15
AU8285091A (en) 1992-02-04
PT98299A (en) 1992-05-29
NZ238921A (en) 1993-05-26
CN1058279A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
US6858367B2 (en) Binder resin containing novel polyhydroxyalkanoate, toner containing the binder resin, and image-forming method and image-forming apparatus which make use of the toner
DE60311158T2 (en) Polyhydroxyalkanoate having amide and sulfone group, process for their preparation, charge control agent containing polyhydroxyalkanoate, binder for toner, toner and image forming method, and image forming apparatus wherein this toner is used
JP3501771B2 (en) Binder resin containing polyhydroxyalkanoate, toner containing the binder resin; image forming method and image forming apparatus using the toner
EP0615166B1 (en) Resins for electrophotographic toners
EP0640882B1 (en) Toner for electrophotography and process for the production thereof
JP3880567B2 (en) Novel polyhydroxyalkanoate copolymer
JP3639831B2 (en) NOVEL POLYHYDROXYALKANOATE AND METHOD FOR PRODUCING THE SAME, CHARGE CONTROL AGENT CONTAINING THE SAME, TONER BINDER, TONER, IMAGE FORMING METHOD USING THE TONER
WO1992001245A1 (en) Electrostatic dry toners containing degradable resins
WO1999055761A1 (en) Polymers containing optical brightener compounds copolymerized therein and methods of making and using therefor
JP2000169745A (en) Use of mixed-crystal pigment of quinacridone series in electrophotographic toner and developer, powder coating and inkjet ink
JP2004315782A (en) New polyhydroxyalkanoate and its manufacturing method; resin composition comprising the same, manufacturing method of molded article using the same; charge-controlling agent comprising new polyhydroxyalkanoate, toner obtained by using the charge-controlling agent; binder resin comprising the resin composition; image-forming method and image-forming device using the toner
EP2085418A1 (en) Hyperbranched ester polymer, and electrophotographic toner and pigment master batch using the polymer
WO2004038512A1 (en) Charge controlling agent containing polyhydroxyalkanoate containing unit containing carboxyl group on side chain in molecule, toner binder and toner, and image formation method and image forming apparatus using toner
JP3647432B2 (en) NOVEL POLYHYDROXYALKANOATES CONTAINING UNITS HAVING CYCLOXY STRUCTURES IN SIDE CHAINS, PROCESS FOR PRODUCING THE SAME, AND BINDER RESIN CONTAINING THE POLYHYDROXYALKANOATES
US5409793A (en) Polyimide-imine toner and developer compositions
JP4323840B2 (en) Polyhydroxyalkanoate having cyclohexyloxy structure in side chain, method for producing the same, and binder resin containing the polyhydroxyalkanoate
JP2006206834A (en) Polyhydroxyalkanoate, manufacturing method thereof, and binder resin containing said polyhydroxyalkanoate
KR20030056257A (en) How to recycle waste polyester to produce useful materials for industrial use
EP0943658A1 (en) Spherical, dyable polyester particles, process for their production and their use for high resolution toners
KR20030056258A (en) Raw resin composition useful by recycling waste polyester resin and its manufacturing method
MXPA00006043A (en) Use of improved cyan pigments in electrophotographic toners and developers, powder coatings and inkjet inks

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CS FI HU JP KP KR LK MC MG MW NO PL RO SD SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG

NENP Non-entry into the national phase

Ref country code: CA