US5822213A - Method and apparatus for determining the center and orientation of a wafer-like object - Google Patents

Method and apparatus for determining the center and orientation of a wafer-like object Download PDF

Info

Publication number
US5822213A
US5822213A US08/623,822 US62382296A US5822213A US 5822213 A US5822213 A US 5822213A US 62382296 A US62382296 A US 62382296A US 5822213 A US5822213 A US 5822213A
Authority
US
United States
Prior art keywords
workpiece
light
spindle
sheet
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/623,822
Inventor
Tac Huynh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Priority to US08/623,822 priority Critical patent/US5822213A/en
Assigned to LAM RESEARCH CORPORATION reassignment LAM RESEARCH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUYNH, TAC
Priority to JP9535408A priority patent/JP2000508070A/en
Priority to EP97917038A priority patent/EP0958594A1/en
Priority to PCT/US1997/004961 priority patent/WO1997037376A1/en
Application granted granted Critical
Publication of US5822213A publication Critical patent/US5822213A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing

Definitions

  • the present invention relates to determining the precise center of a wafer like object, such as a semiconductor wafer. More particularly, a laser is used with a CCD array to precisely determine the position of the edge of the wafer. The calculation of the physical center of the wafer is accomplished by an algorithm using the more precise position readings of the wafer's edge from the CCD array. Additionally, the algorithm is also able to determine the orientation of the semiconductor wafer from the position of the edge of the wafer.
  • a non-contact technique of determining the edge and center of a wafer involves the use of a movable detector including a light source and light detector which are spaced apart to allow a wafer to pass therebetween.
  • Other non-contact techniques include height sensors for determining the location of a wafer flat (see U.S. Pat. No. 4,328,553) or an array of sensors which are located along a path of movement of the wafer (see U.S. Pat. No. 4,819,167). Although these techniques avoid contact of the wafer with pins and thus avoid the problem of generating particulates, they have limitations on accuracy.
  • the light from a light source such as an LED is not coherent and has a dispersionary effect that does not produce a true and accurate image of the wafer's edge. Additional inaccuracies in the image could result from movement of the light detector or wafer during the measurement process. Such inaccurate position readings could thus produce inaccurate results in the determination of the center and orientation of the semiconductor wafer.
  • a light source such as an LED
  • the positioning system 10 includes a wafer shuttle 12, a position sensor 14, a rotatable spindle 16 on a base 17 and a central controller 24 comprising a programmable digital computer.
  • the wafer shuttle 12 retrieves wafers W from a wafer cassette 18 and transports the wafers to the spindle 16 where the wafers are centered and aligned in a desired orientation prior to being removed by an articulated wafer transport arm 20 having a first segment 20a and a cradle segment 20b, both of which are located in an air lock 22 associated with processing equipment such as a plasma etch system, CVD reactor, or the like.
  • the wafer cassette 18 includes horizontal shelves 19 supporting individual wafers and the cassette is movable vertically by an elevator platform.
  • the wafer shuttle 12 includes a carriage 40 mounted to horizontally reciprocate on a pair of guide rails 42 with the position of the carriage 40 being controlled by an electric drive motor 44 controlled by controller 24 through communication line 46 which passes into interface 26.
  • a J-shaped support arm 50 secured to carriage 40 reciprocates along a linear path between the spindle 16 and the wafer cassette 18 as the carriage 40 is driven back and forth along guide rails 42.
  • the support arm 50 can include vacuum ports for securing the wafer during transport.
  • the arm 50 can be retracted to place a wafer over spindle 16 and spindle 16 can be raised so that the wafer is lifted above the arm 50.
  • the spindle 16 can include a vacuum port for firmly securing the wafer thereto. When placed on the spindle 16, the center of the wafer will be offset from the center of the spindle by an unknown distance in an unknown direction.
  • the position sensor 14 includes a carriage 60 mounted on a rotating drive screw 62 driven by motor 64 which in turn is supervised by controller 24 through communication line 66.
  • the carriage 60 includes an optical detector 68 and by translating the carriage 60 back and forth, the location of the periphery of the wafer along the linear path between the spindle and the cassette can be determined.
  • the optical sensor 68 can be a light emitting diode source and a phototransistor detector.
  • the centering operation is described with reference to FIG. 2.
  • the distance r 1 between the center of rotation CR and a point P 1 , on the periphery of the wafer W, is measured after rotating the wafer through an angle ⁇ 1 from an arbitrary baseline BL drawn through the center of rotation.
  • the values of the radius r 1 and angle ⁇ 1 are then stored in the controller 24.
  • the wafer is then further rotated through a second angle ⁇ 2 relative to the baseline BL and the distance r 2 between the center of rotation CR and a point P 2 on the periphery of the wafer W is measured.
  • the wafer can be rotated by the spindle 16 so that the line between the center of rotation CR and the center of the wafer CW is aligned with the direction of the linear path travelled by the support arm 50.
  • the wafer is then lowered onto the support arm 50 by retracting spindle 16 after which the support arm 50 is translated in the direction necessary to align the center of the wafer CW with the center of rotation CR.
  • the spindle 16 can then be raised and the wafer is ready for further manipulation and processing.
  • the invention provides a light detection system for locating a center and/or discontinuity on an edge of a circular workpiece, comprising: a rotatable spindle supporting a circular workpiece such that opposed first and second sides of an outer periphery of the workpiece are located radially outwardly of the spindle, the spindle being rotatable about an axis of rotation so as to rotate the workpiece therewith; a light source facing the first side of the workpiece, the light source projecting a sheet of light intersected by the outer periphery of the workpiece; a light detector facing the second side of the workpiece and receiving a portion of the sheet of light not intersected by the outer periphery of the workpiece; and a controller electrically connected to a motor driving the spindle and to the light detector, the controller receiving signals outputted from the light detector and signals outputted from the motor, the controller being operable to rotate the spindle to a plurality of angular positions, record data corresponding to points on an outer edge of
  • the light detection system cooperates with a light detection transport mechanism engageable with the workpiece, the controller being operable to move the transport mechanism into engagement with the workpiece and move the workpiece to a position at which the center of the workpiece is coincident with the axis of the rotation of the spindle.
  • the light source preferably comprises a laser diode and an optical lens, the optical lens focusing light from the laser diode into the sheet of light.
  • the light detector preferably comprises an array of charge coupled devices.
  • the spindle can be fixedly mounted so as to be immovable with respect to the light source and light detector.
  • the light source preferably projects the sheet of light such that the sheet of light lies in a plane parallel to and passing through the axis of rotation of the spindle.
  • the workpiece transporting mechanism can include an arm movable towards and away from the spindle, the spindle being movable in a direction parallel to the axis of rotation of the spindle, the arm of the workpiece transporting mechanism being movable to a position beneath the workpiece and engaging the workpiece by moving the spindle and lowering the workpiece onto the arm of the workpiece transporting mechanism.
  • the workpiece is preferably a semiconductor wafer having a discontinuity along the outer periphery thereof, the controller being operable to determine the location of the discontinuity with respect to an angular orientation of the wafer and control rotation of the spindle to position the discontinuity at a desired angular orientation.
  • the invention also provides a method of detecting a center of a circular workpiece, comprising steps of: locating a circular workpiece on a rotatable spindle such that opposed first and second sides of an outer periphery of the workpiece are located radially outwardly of the spindle, the spindle cooperating with a light source facing the first side of the workpiece and a light detector facing the second side of the workpiece; projecting a sheet of light from the light source onto the workpiece such that the sheet of light is intersected by the outer periphery of the workpiece and a portion of the sheet of light not intersected by the outer periphery of the workpiece is received by the light detector; outputting signals from the light detector to a controller and recording data corresponding to a point on an outer edge of the workpiece; rotating the spindle such that the workpiece is rotated to a second angular position at which the sheet of light intersects the outer periphery of the workpiece, the controller receiving signals outputted from the light detector and
  • the spindle is rotated by a motor electrically connected to the controller, the controller receiving signals outputted from the motor so as to record angular positions of the spindle.
  • the method can include a moving transport mechanism beneath the workpiece, lowering the spindle such that the workpiece is supported on the transport mechanism, moving the transport mechanism to a position at which the center of the wafer is coincident with the axis of rotation of the spindle, and raising the spindle until the workpiece is removed from the transport mechanism and supported on the spindle.
  • the signals are preferably continuously outputted from the light detector and data corresponding to points on the outer edge of the workpiece are recorded during one continuous revolution of the workpiece.
  • the spindle can be fixedly mounted with respect to the light source such that the light source and spindle remain in the same positions while the signals corresponding to the first and second points are outputted by the light detector.
  • the light source preferably projects the sheet of light such that the sheet of light lies in a plane parallel to and passing through the axis of rotation.
  • the workpiece preferably comprises a semiconductor wafer having a discontinuity such as a flat or V-shaped notch on the outer periphery thereof, the method further comprising a step of determining the location of the discontinuity and rotating the spindle such that the discontinuity is located at a desired angular position.
  • the location of the discontinuity on the edge of the workpiece can be determined by calculating a derivative of a plot of light intensity versus position recorded by the controller.
  • FIG. 1 shows a prior art positioning system
  • FIG. 2 shows an example of a silicon wafer with two flats and illustrates how measurements are made with the positioning system of FIG. 1;
  • FIG. 3 shows a positioning system in accordance with the invention
  • FIGS. 4a-4c show graphs of intensity measurements versus position and indicate the location of a V-shaped notch in a semiconductor wafer.
  • FIGS. 5a-5c show graphs of intensity measurements versus position and indicate the location of a flat on a semiconductor wafer.
  • the following description relates to a system and method for determining the center and orientation of a circular workpiece such as semiconductor wafers. Although the description is directed specifically toward semiconductor wafers, it will be appreciated that the principles of the invention apply equally well to centering and orienting other circular objects such as recording disks, magnetic media disks, circular bioassay plates, and the like.
  • Locating the center and determining the orientation of a semiconductor wafer is a necessary part of many manufacturing processes in the production of semiconductor chips and devices.
  • the crystalline form of silicon used in semiconductor devices has a specific orientation which may affect the performance of devices made from the semiconductor wafer.
  • a light detection system 100 in accordance with the invention includes a semiconductor wafer handling device, a laser diode 102 and an array of charge coupling devices (CCD) 104 separated from the laser diode.
  • CCD charge coupling devices
  • the laser diode and CCD array can be separated by about 21/2 inches.
  • the laser diode 102 projects a beam of light in the direction of the CCD array 104.
  • a wafer 106 to be centered is placed on a spindle 108 driven by motor 109 which rotates the wafer 106 such that the outer periphery of the wafer is between the laser diode and the CCD array.
  • As the wafer 106 is rotated on the spindle 108 an unage of the wafer's edge is projected onto the CCD array 104 by the laser diode 102.
  • the CCD array 104 continuously reads the image of the wafer's edge and sends signals (e.g., light intensity) to microcontroller 110 which correlates the angular position of the spindle 108 with the measured light intensity.
  • This correlated data is stored in the system memory.
  • the microcontroller 110 is programmed to take the correlated data on angular position of the spindle 108 and light intensity data from the CCD array 104 and calculate both the center of the wafer and the orientation of the wafer.
  • a semiconductor wafer W can have one or more flats 60, 62 or notches (not shown) forming one or more discontinuities in the outer edge of the wafer.
  • the discontinuity can be used to indicate the orientation of the crystalline lattice structure of the semiconductor wafer W. Once the orientation of the wafer's crystalline lattice structure is known, the wafer can be rotated to a desired crystal orientation for further processing of the wafer into semiconductor chips and devices.
  • the semiconductor wafer 106 to be centered and aligned is placed on the spindle 108 by a suitable wafer transport mechanism such as that disclosed in commonly owned U.S. Pat. No. 4,833,790 or any other suitable apparatus such as a robotic arm movable to desired x-y or x-y-z positions.
  • the spindle cooperates with a position sensor that outputs signals to the microcontroller representative of the angular position of the spindle 108 and thus the angular position of the semiconductor wafer 106.
  • the light from the laser diode source 102 is shaped by an optical lens 103.
  • the optical lens 103 shapes the beam of light from the laser diode 102 into a thin sheet of light 116.
  • the sheet of light 116 is aligned with the CCD array 104 and produces an image of the edge of the semiconductor wafer 106.
  • the sheet of light 116 is preferably parallel to and passing through an axis of rotation of the spindle 108.
  • the CCD array measures variations in light intensity outputted from the CCD array due to changes in position of the projected image of the wafer edge position as the semiconductor wafer 106 is rotated on the spindle 108.
  • the location of a discontinuity on a circular workpiece can be determined by continuously measuring light intensity at points on the edge of the workpiece as the workpiece is rotated through one complete revolution and taking the derivative of the curve thus generated.
  • the derivative provides a graph of positive and negative values of intensity and the point at which the line connecting the maximum and minimum intensity values intersects the zero axis represents the center of the discontinuity such as a notch or flat on a semiconductor wafer.
  • the sinusoidal nature of the plot of measured light intensity versus position is the result of eccentricities due to the actual physical shape of the wafer and location of the wafer on the rotating spindle.
  • the wafer W is continuously rotated through one complete revolution and edge positions are sampled at a plurality of points such as 800 points.
  • the wafer can be rotated at any suitable speed such as 4 seconds per revolution.
  • FIGS. 4a-c show results of measurements by a CCD array having a linear array of 2096 pixels (each pixel being 11 ⁇ m on each side) at the 800 points on an 8 inch wafer having a 1/8 inch wide by 1/8 inch deep V-shaped notch in the outer edge thereof.
  • the spike in the curve between points 18 and 25 corresponds to the position of the V-shaped notch.
  • FIG. 4a The light intensity measured at the 800 points produces the curve shown in FIG. 4a, the derivative of which is shown in FIG. 4b.
  • FIG. 4c is an enlarged version of FIG. 4b. As shown in FIG. 4c, the center of the V-shaped notch is located between points 21 and 22.
  • FIGS. 5a-c show graphs of light intensity versus position for the 800 points measured on a wafer having a flat about 1/2 inch long. Such flats are typically used on wafers having diameters of 4, 5, 6 and 8 inches.
  • the spike in the curve of FIG. 5a corresponds to the location of the flat.
  • FIG. 5b shows a derivative of the curve of FIG. 5a and
  • FIG. 5c shows an enlarged version of the data shown in FIG. 5b. As shown, the center of the flat is located around positions 88-89.
  • the image projected onto the CCD array 104 is formed from the projection of the sheet of light onto the semiconductor wafer 106.
  • the semiconductor wafer 106 blocks or reflects part of the sheet of light 116 from reaching the CCD array
  • the part of the sheet of light 116 not blocked by the semiconductor wafer 106 reaches the array of CCD devices, each of which produces a signal when the sheet of light is projected upon it.
  • the sheet of light should be sized to completely cover the CCD array when an object is not blocking the sheet of light from reaching the CCD array.
  • the sheet of light should be wide enough (i.e., >11 ⁇ m) to cover the width of an individual pixel and have a length greater than the length of the 2096 pixels (i.e., >2.3056 cm).
  • the sheet of light 116 formed from the beam of light projected from the laser diode 104 through the optical lens 103 has a considerably higher degree of coherency compared to light from other sources, such as LED's, and as such is capable of forming a much sharper image.
  • part of the sheet of light 116 is blocked by the semiconductor wafer 106 to form the image of the edge of the semiconductor wafer 106 there are distortion effects which reduce the clarity and precision of the image projected onto the CCD array 104. These distortion effects are less pronounced when formed from highly coherent light sources, such as with laser light. By using a laser diode distortion effects are reduced thereby producing a sharper image of the semiconductor wafer 106.
  • This sharper image represents a more accurate and precise representation of the location of the position of the edge of the semiconductor wafer 106.
  • a higher resolution CCD array 104 can be used where there are more CCD devices percentimeter in the CCD array.
  • the advantage of a higher resolution CCD array is that it gives a more precise reading of the position of the edge of the semiconductor wafer 106 due to its ability to more precisely locate the boundary between the image formed from the sheet of light 116 and the area where light is blocked due to the edge of the semiconductor wafer 106.
  • the use of a sheet of light according to the invention does away with the additional apparatus used to move the light source in commonly owned U.S. Pat. No. 4,833,790.
  • the correlated data stored in the memory of the microcontroller device is processed with a centering algorithm and an orientation algorithm to determine the physical center of the silicon wafer and the orientation of the crystalline lattice structure of the silicon wafer.
  • the centering algorithm takes the reading from the CCD array at several angular positions of the spindle such as I 0 , I 200 , I 400 and I 600 .
  • I 0 is separated from I 400 by 180°.
  • I 200 is separated from I 600 by 180°.
  • the eccentricity of the wafer's center can be calculated from: ##EQU1## where X center is the x-coordinate of the center of the wafer and Y center is the y-coordinate of the center of the wafer.
  • the radius r of the wafer can be calculated from: ##EQU2##
  • the location of the wafer's center from the center of rotation of the spindle can be determined from X center , Y center and r.

Abstract

A device and method for determining the center and orientation of a circular workpiece such as a semiconductor wafer. A laser diode projects a sheet of light onto a linear array of charge coupled devices which measures light intensity as a semiconductor wafer is rotated with its outer periphery intersected by the sheet of light. From a plot of light intensity data versus position at the wafer edge, a derivative of such plot can be calculated to locate an orientation notch or flat in the edge of the wafer. Also, from the plot of light intensity versus edge position it is possible to locate the center of the wafer relative to a rotation axis of a spindle on which the wafer is supported.

Description

FIELD OF THE INVENTION
The present invention relates to determining the precise center of a wafer like object, such as a semiconductor wafer. More particularly, a laser is used with a CCD array to precisely determine the position of the edge of the wafer. The calculation of the physical center of the wafer is accomplished by an algorithm using the more precise position readings of the wafer's edge from the CCD array. Additionally, the algorithm is also able to determine the orientation of the semiconductor wafer from the position of the edge of the wafer.
BACKGROUND OF THE INVENTION
In the processing of semiconductor wafers by plasma etching, chemical vapor deposition, photolithographic etching and other means there is a need to precisely locate and align the wafer. Traditional means used mechanical pins that, through contact with the edge of the wafer, were able to determine the edge and then calculate the wafer's center. The use of pins is not sufficiently accurate for some microelectronic circuitry work. Additionally, the contact from pins has the effect of producing particulates which interfere with processing of the wafer.
A non-contact technique of determining the edge and center of a wafer involves the use of a movable detector including a light source and light detector which are spaced apart to allow a wafer to pass therebetween. Other non-contact techniques include height sensors for determining the location of a wafer flat (see U.S. Pat. No. 4,328,553) or an array of sensors which are located along a path of movement of the wafer (see U.S. Pat. No. 4,819,167). Although these techniques avoid contact of the wafer with pins and thus avoid the problem of generating particulates, they have limitations on accuracy. For instance, the light from a light source such as an LED, even with correcting optics, is not coherent and has a dispersionary effect that does not produce a true and accurate image of the wafer's edge. Additional inaccuracies in the image could result from movement of the light detector or wafer during the measurement process. Such inaccurate position readings could thus produce inaccurate results in the determination of the center and orientation of the semiconductor wafer. Given the increasing need to reduce the size of components in chip manufacture there is an ever increasing need to be able to precisely determine both the center and orientation of semiconductor wafers during processing.
A system for positioning of semiconductor wafers is disclosed in commonly owned U.S. Pat. No. 4,833,790. As shown in FIG. 1, the positioning system 10 includes a wafer shuttle 12, a position sensor 14, a rotatable spindle 16 on a base 17 and a central controller 24 comprising a programmable digital computer. The wafer shuttle 12 retrieves wafers W from a wafer cassette 18 and transports the wafers to the spindle 16 where the wafers are centered and aligned in a desired orientation prior to being removed by an articulated wafer transport arm 20 having a first segment 20a and a cradle segment 20b, both of which are located in an air lock 22 associated with processing equipment such as a plasma etch system, CVD reactor, or the like.
The wafer cassette 18 includes horizontal shelves 19 supporting individual wafers and the cassette is movable vertically by an elevator platform. The wafer shuttle 12 includes a carriage 40 mounted to horizontally reciprocate on a pair of guide rails 42 with the position of the carriage 40 being controlled by an electric drive motor 44 controlled by controller 24 through communication line 46 which passes into interface 26. A J-shaped support arm 50 secured to carriage 40 reciprocates along a linear path between the spindle 16 and the wafer cassette 18 as the carriage 40 is driven back and forth along guide rails 42. The support arm 50 can include vacuum ports for securing the wafer during transport. The arm 50 can be retracted to place a wafer over spindle 16 and spindle 16 can be raised so that the wafer is lifted above the arm 50.
The spindle 16 can include a vacuum port for firmly securing the wafer thereto. When placed on the spindle 16, the center of the wafer will be offset from the center of the spindle by an unknown distance in an unknown direction. The position sensor 14 includes a carriage 60 mounted on a rotating drive screw 62 driven by motor 64 which in turn is supervised by controller 24 through communication line 66. The carriage 60 includes an optical detector 68 and by translating the carriage 60 back and forth, the location of the periphery of the wafer along the linear path between the spindle and the cassette can be determined. The optical sensor 68 can be a light emitting diode source and a phototransistor detector.
The centering operation is described with reference to FIG. 2. In operation, the distance r1, between the center of rotation CR and a point P1, on the periphery of the wafer W, is measured after rotating the wafer through an angle Θ1 from an arbitrary baseline BL drawn through the center of rotation. The values of the radius r1 and angle Θ1, are then stored in the controller 24. The wafer is then further rotated through a second angle θ2 relative to the baseline BL and the distance r2 between the center of rotation CR and a point P2 on the periphery of the wafer W is measured. Similar measurements are then made for a third point P3 and when the measurements are completed, the length of offset l and angular offset α are calculated according to mathematical formulas. Once the offset angle α and offset length l have been determined, the wafer can be rotated by the spindle 16 so that the line between the center of rotation CR and the center of the wafer CW is aligned with the direction of the linear path travelled by the support arm 50. The wafer is then lowered onto the support arm 50 by retracting spindle 16 after which the support arm 50 is translated in the direction necessary to align the center of the wafer CW with the center of rotation CR. The spindle 16 can then be raised and the wafer is ready for further manipulation and processing.
It is an object of the present invention to provide a method and apparatus to precisely locate the edge, center and orientation of a semiconductor wafer in a manner which overcomes limitations of the prior art.
SUMMARY OF THE INVENTION
The invention provides a light detection system for locating a center and/or discontinuity on an edge of a circular workpiece, comprising: a rotatable spindle supporting a circular workpiece such that opposed first and second sides of an outer periphery of the workpiece are located radially outwardly of the spindle, the spindle being rotatable about an axis of rotation so as to rotate the workpiece therewith; a light source facing the first side of the workpiece, the light source projecting a sheet of light intersected by the outer periphery of the workpiece; a light detector facing the second side of the workpiece and receiving a portion of the sheet of light not intersected by the outer periphery of the workpiece; and a controller electrically connected to a motor driving the spindle and to the light detector, the controller receiving signals outputted from the light detector and signals outputted from the motor, the controller being operable to rotate the spindle to a plurality of angular positions, record data corresponding to points on an outer edge of the workpiece and determine a center of the workpiece relative to the axis of rotation of the spindle.
According to a preferred embodiment, the light detection system cooperates with a light detection transport mechanism engageable with the workpiece, the controller being operable to move the transport mechanism into engagement with the workpiece and move the workpiece to a position at which the center of the workpiece is coincident with the axis of the rotation of the spindle. The light source preferably comprises a laser diode and an optical lens, the optical lens focusing light from the laser diode into the sheet of light. The light detector preferably comprises an array of charge coupled devices. The spindle can be fixedly mounted so as to be immovable with respect to the light source and light detector. The light source preferably projects the sheet of light such that the sheet of light lies in a plane parallel to and passing through the axis of rotation of the spindle. The workpiece transporting mechanism can include an arm movable towards and away from the spindle, the spindle being movable in a direction parallel to the axis of rotation of the spindle, the arm of the workpiece transporting mechanism being movable to a position beneath the workpiece and engaging the workpiece by moving the spindle and lowering the workpiece onto the arm of the workpiece transporting mechanism. The workpiece is preferably a semiconductor wafer having a discontinuity along the outer periphery thereof, the controller being operable to determine the location of the discontinuity with respect to an angular orientation of the wafer and control rotation of the spindle to position the discontinuity at a desired angular orientation.
The invention also provides a method of detecting a center of a circular workpiece, comprising steps of: locating a circular workpiece on a rotatable spindle such that opposed first and second sides of an outer periphery of the workpiece are located radially outwardly of the spindle, the spindle cooperating with a light source facing the first side of the workpiece and a light detector facing the second side of the workpiece; projecting a sheet of light from the light source onto the workpiece such that the sheet of light is intersected by the outer periphery of the workpiece and a portion of the sheet of light not intersected by the outer periphery of the workpiece is received by the light detector; outputting signals from the light detector to a controller and recording data corresponding to a point on an outer edge of the workpiece; rotating the spindle such that the workpiece is rotated to a second angular position at which the sheet of light intersects the outer periphery of the workpiece, the controller receiving signals outputted from the light detector and recording data corresponding to a second point on the outer edge of the workpiece; and calculating a center of the workpiece relative to the axis of rotation of the spindle based on the data corresponding to the first and second points.
According to a preferred embodiment, the spindle is rotated by a motor electrically connected to the controller, the controller receiving signals outputted from the motor so as to record angular positions of the spindle. The method can include a moving transport mechanism beneath the workpiece, lowering the spindle such that the workpiece is supported on the transport mechanism, moving the transport mechanism to a position at which the center of the wafer is coincident with the axis of rotation of the spindle, and raising the spindle until the workpiece is removed from the transport mechanism and supported on the spindle. The signals are preferably continuously outputted from the light detector and data corresponding to points on the outer edge of the workpiece are recorded during one continuous revolution of the workpiece. The spindle can be fixedly mounted with respect to the light source such that the light source and spindle remain in the same positions while the signals corresponding to the first and second points are outputted by the light detector. The light source preferably projects the sheet of light such that the sheet of light lies in a plane parallel to and passing through the axis of rotation. The workpiece preferably comprises a semiconductor wafer having a discontinuity such as a flat or V-shaped notch on the outer periphery thereof, the method further comprising a step of determining the location of the discontinuity and rotating the spindle such that the discontinuity is located at a desired angular position. The location of the discontinuity on the edge of the workpiece can be determined by calculating a derivative of a plot of light intensity versus position recorded by the controller.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a prior art positioning system;
FIG. 2 shows an example of a silicon wafer with two flats and illustrates how measurements are made with the positioning system of FIG. 1;
FIG. 3 shows a positioning system in accordance with the invention;
FIGS. 4a-4c show graphs of intensity measurements versus position and indicate the location of a V-shaped notch in a semiconductor wafer; and
FIGS. 5a-5c show graphs of intensity measurements versus position and indicate the location of a flat on a semiconductor wafer.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following description relates to a system and method for determining the center and orientation of a circular workpiece such as semiconductor wafers. Although the description is directed specifically toward semiconductor wafers, it will be appreciated that the principles of the invention apply equally well to centering and orienting other circular objects such as recording disks, magnetic media disks, circular bioassay plates, and the like.
Locating the center and determining the orientation of a semiconductor wafer is a necessary part of many manufacturing processes in the production of semiconductor chips and devices. In the case of a silicon wafer, the crystalline form of silicon used in semiconductor devices has a specific orientation which may affect the performance of devices made from the semiconductor wafer.
As shown in FIG. 3, a light detection system 100 in accordance with the invention includes a semiconductor wafer handling device, a laser diode 102 and an array of charge coupling devices (CCD) 104 separated from the laser diode. In the case where the circular workpiece is a semiconductor wafer, the laser diode and CCD array can be separated by about 21/2 inches.
The laser diode 102 projects a beam of light in the direction of the CCD array 104. A wafer 106 to be centered is placed on a spindle 108 driven by motor 109 which rotates the wafer 106 such that the outer periphery of the wafer is between the laser diode and the CCD array. As the wafer 106 is rotated on the spindle 108 an unage of the wafer's edge is projected onto the CCD array 104 by the laser diode 102. The CCD array 104 continuously reads the image of the wafer's edge and sends signals (e.g., light intensity) to microcontroller 110 which correlates the angular position of the spindle 108 with the measured light intensity. This correlated data is stored in the system memory. The microcontroller 110 is programmed to take the correlated data on angular position of the spindle 108 and light intensity data from the CCD array 104 and calculate both the center of the wafer and the orientation of the wafer.
As shown in FIG. 2, a semiconductor wafer W can have one or more flats 60, 62 or notches (not shown) forming one or more discontinuities in the outer edge of the wafer. The discontinuity can be used to indicate the orientation of the crystalline lattice structure of the semiconductor wafer W. Once the orientation of the wafer's crystalline lattice structure is known, the wafer can be rotated to a desired crystal orientation for further processing of the wafer into semiconductor chips and devices.
In the embodiment of the invention shown in FIG. 3, the semiconductor wafer 106 to be centered and aligned is placed on the spindle 108 by a suitable wafer transport mechanism such as that disclosed in commonly owned U.S. Pat. No. 4,833,790 or any other suitable apparatus such as a robotic arm movable to desired x-y or x-y-z positions. The spindle cooperates with a position sensor that outputs signals to the microcontroller representative of the angular position of the spindle 108 and thus the angular position of the semiconductor wafer 106. In order to project a beam of light which will accommodate off-center positioning of the wafer, discontinuities on the wafer periphery and even different size wafers, the light from the laser diode source 102 is shaped by an optical lens 103. The optical lens 103 shapes the beam of light from the laser diode 102 into a thin sheet of light 116. The sheet of light 116 is aligned with the CCD array 104 and produces an image of the edge of the semiconductor wafer 106. The sheet of light 116 is preferably parallel to and passing through an axis of rotation of the spindle 108. Thus, the CCD array measures variations in light intensity outputted from the CCD array due to changes in position of the projected image of the wafer edge position as the semiconductor wafer 106 is rotated on the spindle 108.
According to the invention, the location of a discontinuity on a circular workpiece can be determined by continuously measuring light intensity at points on the edge of the workpiece as the workpiece is rotated through one complete revolution and taking the derivative of the curve thus generated. The derivative provides a graph of positive and negative values of intensity and the point at which the line connecting the maximum and minimum intensity values intersects the zero axis represents the center of the discontinuity such as a notch or flat on a semiconductor wafer. It should be noted that the sinusoidal nature of the plot of measured light intensity versus position is the result of eccentricities due to the actual physical shape of the wafer and location of the wafer on the rotating spindle.
According to the preferred embodiment of the invention, to determine the center CW of the wafer W relative to the center CR of the spindle 108, the wafer W is continuously rotated through one complete revolution and edge positions are sampled at a plurality of points such as 800 points. The wafer can be rotated at any suitable speed such as 4 seconds per revolution. FIGS. 4a-c show results of measurements by a CCD array having a linear array of 2096 pixels (each pixel being 11 μm on each side) at the 800 points on an 8 inch wafer having a 1/8 inch wide by 1/8 inch deep V-shaped notch in the outer edge thereof. The spike in the curve between points 18 and 25 corresponds to the position of the V-shaped notch. The light intensity measured at the 800 points produces the curve shown in FIG. 4a, the derivative of which is shown in FIG. 4b. FIG. 4c is an enlarged version of FIG. 4b. As shown in FIG. 4c, the center of the V-shaped notch is located between points 21 and 22.
FIGS. 5a-c show graphs of light intensity versus position for the 800 points measured on a wafer having a flat about 1/2 inch long. Such flats are typically used on wafers having diameters of 4, 5, 6 and 8 inches. The spike in the curve of FIG. 5a corresponds to the location of the flat. FIG. 5b shows a derivative of the curve of FIG. 5a and FIG. 5c shows an enlarged version of the data shown in FIG. 5b. As shown, the center of the flat is located around positions 88-89.
The image projected onto the CCD array 104 is formed from the projection of the sheet of light onto the semiconductor wafer 106. As the semiconductor wafer 106 blocks or reflects part of the sheet of light 116 from reaching the CCD array, the part of the sheet of light 116 not blocked by the semiconductor wafer 106 reaches the array of CCD devices, each of which produces a signal when the sheet of light is projected upon it. The sheet of light should be sized to completely cover the CCD array when an object is not blocking the sheet of light from reaching the CCD array. For example, with the 2096 11×11 μm pixel array, the sheet of light should be wide enough (i.e., >11 μm) to cover the width of an individual pixel and have a length greater than the length of the 2096 pixels (i.e., >2.3056 cm).
The sheet of light 116 formed from the beam of light projected from the laser diode 104 through the optical lens 103 has a considerably higher degree of coherency compared to light from other sources, such as LED's, and as such is capable of forming a much sharper image. When part of the sheet of light 116 is blocked by the semiconductor wafer 106 to form the image of the edge of the semiconductor wafer 106 there are distortion effects which reduce the clarity and precision of the image projected onto the CCD array 104. These distortion effects are less pronounced when formed from highly coherent light sources, such as with laser light. By using a laser diode distortion effects are reduced thereby producing a sharper image of the semiconductor wafer 106. This sharper image represents a more accurate and precise representation of the location of the position of the edge of the semiconductor wafer 106. With a more precise and accurate image a higher resolution CCD array 104 can be used where there are more CCD devices percentimeter in the CCD array. The advantage of a higher resolution CCD array is that it gives a more precise reading of the position of the edge of the semiconductor wafer 106 due to its ability to more precisely locate the boundary between the image formed from the sheet of light 116 and the area where light is blocked due to the edge of the semiconductor wafer 106. Additionally, the use of a sheet of light according to the invention does away with the additional apparatus used to move the light source in commonly owned U.S. Pat. No. 4,833,790.
The correlated data stored in the memory of the microcontroller device is processed with a centering algorithm and an orientation algorithm to determine the physical center of the silicon wafer and the orientation of the crystalline lattice structure of the silicon wafer. From the correlated data the centering algorithm takes the reading from the CCD array at several angular positions of the spindle such as I0, I200, I400 and I600. With reference to one complete rotation of the spindle, since the 360° rotation of the spindle is graduated into 800 equal angular displacements, I0 is separated from I400 by 180°. Similarly, I200 is separated from I600 by 180°. From the precise measurements of the edge readings the eccentricity of the wafer's center can be calculated from: ##EQU1## where Xcenter is the x-coordinate of the center of the wafer and Ycenter is the y-coordinate of the center of the wafer. The radius r of the wafer can be calculated from: ##EQU2## The location of the wafer's center from the center of rotation of the spindle can be determined from Xcenter, Ycenter and r.
It will be appreciated by those of ordinary skill in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes that come within the meaning and range of equivalence thereof are intended to be embraced therein.

Claims (24)

What is claimed is:
1. A light detection system for locating a center and/or discontinuity on an edge of a circular workpiece, comprising:
a rotatable spindle supporting a circular workpiece such that opposed first and second sides of an outer periphery of the workpiece are located radially outwardly of the spindle, the spindle being rotatable about an axis of rotation so as to rotate the workpiece therewith;
a light source facing the first side of the workpiece, the light source projecting a sheet of light intersected by the outer periphery of the workpiece;
a light detector facing the second side of the workpiece and receiving a portion of the sheet of light not intersected by the outer periphery of the workpiece; and
a controller electrically connected to a motor driving the spindle and to the light detector, the controller receiving signals outputted from the light detector and signals outputted from the motor, the controller being operable to rotate the spindle to a plurality of angular positions, record data corresponding to points on an outer edge of the workpiece and determine a center of the workpiece relative to the axis of rotation of the spindle.
2. The light detection system of claim 1, further comprising a transport mechanism engageable with the workpiece, the controller being operable to move the transport mechanism into engagement with the workpiece and move the workpiece to a position at which the center of the workpiece is coincident with the axis of the rotation of the spindle.
3. The light detection system of claim 1, wherein the light source comprises a laser diode and an optical lens, the optical lens focusing light from the laser diode into the sheet of light and the data recorded by the controller corresponding to light intensity measured by the light detector.
4. The light detection system of claim 1, wherein the light detector comprises a linear array of charge coupled devices which outputs data to the controller corresponding to measured light intensity.
5. The light detection system of claim 1, wherein the spindle is fixedly mounted so as to be immovable with respect to the light source and light detector.
6. The light detection system of claim 1, wherein the light source projects the sheet of light such that the sheet of light lies in a plane parallel to and passing through the axis of rotation of the spindle.
7. The light detection system of claim 1, wherein the light source comprises a laser diode.
8. The light detection system of claim 1, further comprising a workpiece transporting mechanism having an arm movable towards and away from the spindle, the arm of the workpiece transporting mechanism being movable to a position beneath the workpiece and engaging the workpiece by moving the spindle and lowering the workpiece onto the arm of the workpiece transporting mechanism.
9. The light detection system of claim 1, wherein the workpiece is a semiconductor wafer having a discontinuity along the outer periphery thereof, the controller being operable to determine the location of the discontinuity with respect to an angular orientation of the wafer and control rotation of the spindle to position the discontinuity at a desired angular orientation.
10. A method of detecting a center of a circular workpiece, comprising steps of:
locating a circular workpiece on a rotatable spindle such that opposed first and second sides of an outer periphery of the workpiece are located radially outwardly of the spindle, the spindle cooperating with a light source facing the first side of the workpiece and a light detector facing the second side of the workpiece;
projecting a sheet of light from the light source onto the workpiece such that the sheet of light is intersected by the outer periphery of the workpiece and a portion of the sheet of light not intersected by the outer periphery of the workpiece is received by the light detector;
outputting signals from the light detector to a controller and recording data corresponding to a point on an outer edge of the workpiece;
rotating the spindle such that the workpiece is rotated to a second angular position at which the sheet of light intersects the outer periphery of the workpiece, the controller receiving signals outputted from the light detector and recording data corresponding to a second point on the outer edge of the workpiece; and
calculating a center of the workpiece relative to the axis of rotation of the spindle based on the data corresponding to the first and second points.
11. The method of claim 10, wherein the spindle is rotated by a motor electrically connected to the controller, the controller receiving signals outputted from the motor so as to record angular positions of the spindle.
12. The method of claim 10, further comprising moving a transport mechanism beneath the workpiece, placing the workpiece on the transport mechanism, moving the transport mechanism to a position at which the center of the wafer is coincident with the axis of rotation of the spindle, and removing the workpiece from the transport mechanism and placing the workpiece on the spindle.
13. The method of claim 10, wherein the light detector comprises a linear array of charge coupled devices and light source comprises a laser diode and an optical lens, the optical lens focusing light from the laser diode into the sheet of light.
14. The method of claim 10, wherein the signals are continuously outputted from the light detector and data corresponding to points on the outer edge of the workpiece are recorded during one continuous revolution of the workpiece.
15. The method of claim 10, wherein the spindle is fixedly mounted with respect to the light source such that the light source and spindle remain in the same positions while the signals corresponding to the first and second points are outputted by the light detector.
16. The method of claim 10, wherein the light source projects the sheet of light such that the sheet of light lies in a plane parallel to and passing through the axis of rotation of the spindle.
17. The method of claim 10, wherein the workpiece comprises a semiconductor wafer having a discontinuity on the outer periphery thereof, the method further comprising a step of determining the location of the discontinuity and rotating the spindle such that the discontinuity is located at a desired angular position.
18. The method of claim 10, wherein the location of a discontinuity on the edge of the workpiece is determined by calculating a derivative of a plot of light intensity versus position recorded by the controller.
19. The method of claim 10, wherein the location of a flat on the edge of the workpiece is determined by calculating a derivative of a plot of light intensity versus position recorded by the controller.
20. The method of claim 10, wherein the location of a V-shaped notch on the edge of the workpiece is determined by calculating a derivative of a plot of light intensity versus position recorded by the controller.
21. The light detection system of claim 1, wherein the light source projects the sheet of light such that the sheet of light lies in a plane parallel to the axis of rotation of the spindle.
22. The light detection system of claim 1, wherein the light source projects the sheet of light in a plane generally perpendicular to a plane of the workpiece.
23. The light detection system of claim 1, wherein the spindle rotates the workpiece such that the outer periphery of the workpiece passes between the light source and the light detector.
24. The method of claim 13, wherein the spindle rotates the workpiece such that the outer periphery of the workpiece passes between the light source and the light detector.
US08/623,822 1996-03-29 1996-03-29 Method and apparatus for determining the center and orientation of a wafer-like object Expired - Lifetime US5822213A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/623,822 US5822213A (en) 1996-03-29 1996-03-29 Method and apparatus for determining the center and orientation of a wafer-like object
JP9535408A JP2000508070A (en) 1996-03-29 1997-03-27 Method and apparatus for determining the center and orientation of a wafer-like object
EP97917038A EP0958594A1 (en) 1996-03-29 1997-03-27 A method and apparatus for determining the center and orientation of a wafer-like object
PCT/US1997/004961 WO1997037376A1 (en) 1996-03-29 1997-03-27 A method and apparatus for determining the center and orientation of a wafer-like object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/623,822 US5822213A (en) 1996-03-29 1996-03-29 Method and apparatus for determining the center and orientation of a wafer-like object

Publications (1)

Publication Number Publication Date
US5822213A true US5822213A (en) 1998-10-13

Family

ID=24499534

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/623,822 Expired - Lifetime US5822213A (en) 1996-03-29 1996-03-29 Method and apparatus for determining the center and orientation of a wafer-like object

Country Status (4)

Country Link
US (1) US5822213A (en)
EP (1) EP0958594A1 (en)
JP (1) JP2000508070A (en)
WO (1) WO1997037376A1 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943638A (en) * 1996-07-16 1999-08-24 Nec Corporation Position detecting method by reflected scattered light of a laser beam applied to a position-detected object
US6052913A (en) * 1997-07-15 2000-04-25 Tokyo Electron Limited Positioning device and positioning method
EP1045430A2 (en) * 1999-04-16 2000-10-18 Berkeley Process Control, Inc. Wafer aligner system
US6190037B1 (en) 1999-02-19 2001-02-20 Applied Materials, Inc. Non-intrusive, on-the-fly (OTF) temperature measurement and monitoring system
US6211514B1 (en) * 1997-07-03 2001-04-03 Brooks Automation Gmbh Device and method for sensing wafer-shaped objects and shelves in a container
US6260282B1 (en) * 1998-03-27 2001-07-17 Nikon Corporation Stage control with reduced synchronization error and settling time
US6301797B1 (en) * 1998-06-04 2001-10-16 Seagate Technology Llc Recognizing and compensating for disk shift in computer disk drives
US6327517B1 (en) 2000-07-27 2001-12-04 Applied Materials, Inc. Apparatus for on-the-fly center finding and notch aligning for wafer handling robots
US20010049880A1 (en) * 2000-05-25 2001-12-13 Nikon Corporation Carrier shape measurement device
US6374149B1 (en) * 1998-05-18 2002-04-16 Texas Instruments Incorporated System and method for determining the center of a wafer on a wafer table
US20020071129A1 (en) * 2000-12-07 2002-06-13 Ulvac, Inc Axis determination apparatus, film-thickness measurement apparatus, deposition apparatus, axis determination method, and film-thickness measurement method
US6425280B1 (en) * 1999-07-30 2002-07-30 International Business Machines Corporation Wafer alignment jig for wafer-handling systems
US6471464B1 (en) 1999-10-08 2002-10-29 Applied Materials, Inc. Wafer positioning device
US6575177B1 (en) 1999-04-27 2003-06-10 Applied Materials Inc. Semiconductor substrate cleaning system
KR100389129B1 (en) * 2001-03-06 2003-06-25 삼성전자주식회사 Multi-function wafer aligner
US6630995B1 (en) 1999-09-07 2003-10-07 Applied Materials, Inc. Method and apparatus for embedded substrate and system status monitoring
US20030196343A1 (en) * 2002-04-11 2003-10-23 Michael Abraham Measurement module
US6693708B1 (en) 1999-09-07 2004-02-17 Applied Materials, Inc. Method and apparatus for substrate surface inspection using spectral profiling techniques
US6697206B2 (en) 2000-12-19 2004-02-24 Imation Corp. Tape edge monitoring
US6697517B1 (en) 1999-09-07 2004-02-24 Applied Magerials, Inc. Particle detection and embedded vision system to enhance substrate yield and throughput
US6707545B1 (en) 1999-09-07 2004-03-16 Applied Materials, Inc. Optical signal routing method and apparatus providing multiple inspection collection points on semiconductor manufacturing systems
US6721045B1 (en) 1999-09-07 2004-04-13 Applied Materials, Inc. Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
US20040089220A1 (en) * 2001-05-22 2004-05-13 Saint-Gobain Ceramics & Plastics, Inc. Materials for use in optical and optoelectronic applications
US20040140797A1 (en) * 2002-12-13 2004-07-22 Applied Materials, Inc. Method and apparatus for measuring object thickness
US20040151574A1 (en) * 2001-05-29 2004-08-05 Zhimin Lu Method and apparatus to correct wafer drift
US6813032B1 (en) 1999-09-07 2004-11-02 Applied Materials, Inc. Method and apparatus for enhanced embedded substrate inspection through process data collection and substrate imaging techniques
US20040258514A1 (en) * 2002-06-12 2004-12-23 Ivo Raaijmakers Semiconductor wafer position shift measurement and correction
US20050023490A1 (en) * 2003-07-29 2005-02-03 Imation Corp. Edge sensing of data storage media
US20050061231A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US20050061230A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US20050061229A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Optical spinel articles and methods for forming same
US20050248754A1 (en) * 2004-05-05 2005-11-10 Chun-Sheng Wang Wafer aligner with WEE (water edge exposure) function
US7012684B1 (en) 1999-09-07 2006-03-14 Applied Materials, Inc. Method and apparatus to provide for automated process verification and hierarchical substrate examination
US20060131450A1 (en) * 2004-12-22 2006-06-22 Trimble Navigation Ltd. System and method for determining a pivot center and radius based on a least squares approach
US20060194406A1 (en) * 2005-02-28 2006-08-31 Nitto Denko Corporation Semiconductor wafer positioning method, and apparatus using the same
US20060215152A1 (en) * 2005-03-22 2006-09-28 Olympus Corporation Substrate processing apparatus and substrate housing method
US20060287761A1 (en) * 2005-06-16 2006-12-21 Shigeru Ishizawa Transfer mechanism and semiconductor processing system
WO2007015975A2 (en) * 2005-07-27 2007-02-08 Mattson Technology, Inc. Process for determining the actual position of a rotation axis of a transportation mechanism
US20070085905A1 (en) * 2001-06-19 2007-04-19 Batson Don T Method and apparatus for substrate imaging
US20080010845A1 (en) * 2002-04-26 2008-01-17 Accretech Usa, Inc. Apparatus for cleaning a wafer substrate
US20080168673A1 (en) * 2007-01-11 2008-07-17 Sokudo Co., Ltd. Method and system for detection of wafer centering in a track lithography tool
US20090093906A1 (en) * 2007-10-04 2009-04-09 Asm Japan K.K. Position sensor system for substrate transfer robot
US20090155452A1 (en) * 2007-12-13 2009-06-18 Asm Genitech Korea Ltd. Thin film deposition apparatus and method thereof
US20090252580A1 (en) * 2008-04-03 2009-10-08 Asm Japan K.K. Wafer processing apparatus with wafer alignment device
US20100158644A1 (en) * 2008-12-22 2010-06-24 Asm Japan K.K. Semiconductor-processing apparatus equipped with robot diagnostic module
US7751929B1 (en) * 2004-04-19 2010-07-06 Amazon Technologies, Inc. Package handling system with kickout labeling
US20100271229A1 (en) * 2007-12-27 2010-10-28 Christine Allen-Blanchette Systems and methods for calibrating end effector alignment in a plasma processing system
US20100272347A1 (en) * 2007-12-27 2010-10-28 Matt Rodnick Systems and methods for dynamic alignment beam calibration
US20100280790A1 (en) * 2007-12-27 2010-11-04 Matt Rodnick Systems and methods for calibrating end effector alignment using at least a light source
US20100277749A1 (en) * 2007-12-27 2010-11-04 Matt Rodnick Arrangements and methods for determining positions and offsets
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
US20120068420A1 (en) * 2010-03-28 2012-03-22 Ophir Optronics Ltd. Centering method for optical elements
US8273178B2 (en) 2008-02-28 2012-09-25 Asm Genitech Korea Ltd. Thin film deposition apparatus and method of maintaining the same
US8337278B2 (en) 2007-09-24 2012-12-25 Applied Materials, Inc. Wafer edge characterization by successive radius measurements
US20130084390A1 (en) * 2005-03-17 2013-04-04 Kunihiko Suzuki Film-forming apparatus and film-forming method
US20130138238A1 (en) * 2011-11-28 2013-05-30 Macronix International Co., Ltd. Wafer centering hardware design and process
CN104465472A (en) * 2013-09-22 2015-03-25 盛美半导体设备(上海)有限公司 Alignment device and method
WO2015179233A1 (en) * 2014-05-17 2015-11-26 Kla-Tencor Corporation Wafer edge detection and inspection
US9831110B2 (en) 2015-07-30 2017-11-28 Lam Research Corporation Vision-based wafer notch position measurement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098668A2 (en) * 2002-05-16 2003-11-27 Asyst Technologies, Inc. Pre-aligner
JP6397790B2 (en) * 2015-03-31 2018-09-26 株式会社東京精密 Wafer positioning detection apparatus, method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819167A (en) * 1987-04-20 1989-04-04 Applied Materials, Inc. System and method for detecting the center of an integrated circuit wafer
EP0435057A1 (en) * 1989-12-20 1991-07-03 Nitto Denko Corporation A wafer shape detecting method
US5291270A (en) * 1991-03-22 1994-03-01 Carl-Zeiss-Stiftung Method and arrangement for detecting edges and bores of a workpiece with an optical probe head
US5365672A (en) * 1993-01-26 1994-11-22 Mecs Corporation Positioning apparatus for a semiconductor wafer
WO1995000819A1 (en) * 1993-06-17 1995-01-05 Koo, Ann, F. Method and apparatus for finding wafer index marks and centers
US5466945A (en) * 1994-03-23 1995-11-14 Eaton Corporation Apparatus for detecting proper positioning of objects in a holder
US5497007A (en) * 1995-01-27 1996-03-05 Applied Materials, Inc. Method for automatically establishing a wafer coordinate system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819167A (en) * 1987-04-20 1989-04-04 Applied Materials, Inc. System and method for detecting the center of an integrated circuit wafer
EP0435057A1 (en) * 1989-12-20 1991-07-03 Nitto Denko Corporation A wafer shape detecting method
US5291270A (en) * 1991-03-22 1994-03-01 Carl-Zeiss-Stiftung Method and arrangement for detecting edges and bores of a workpiece with an optical probe head
US5365672A (en) * 1993-01-26 1994-11-22 Mecs Corporation Positioning apparatus for a semiconductor wafer
WO1995000819A1 (en) * 1993-06-17 1995-01-05 Koo, Ann, F. Method and apparatus for finding wafer index marks and centers
US5466945A (en) * 1994-03-23 1995-11-14 Eaton Corporation Apparatus for detecting proper positioning of objects in a holder
US5497007A (en) * 1995-01-27 1996-03-05 Applied Materials, Inc. Method for automatically establishing a wafer coordinate system

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943638A (en) * 1996-07-16 1999-08-24 Nec Corporation Position detecting method by reflected scattered light of a laser beam applied to a position-detected object
US6211514B1 (en) * 1997-07-03 2001-04-03 Brooks Automation Gmbh Device and method for sensing wafer-shaped objects and shelves in a container
US6052913A (en) * 1997-07-15 2000-04-25 Tokyo Electron Limited Positioning device and positioning method
US6260282B1 (en) * 1998-03-27 2001-07-17 Nikon Corporation Stage control with reduced synchronization error and settling time
US6374149B1 (en) * 1998-05-18 2002-04-16 Texas Instruments Incorporated System and method for determining the center of a wafer on a wafer table
US6301797B1 (en) * 1998-06-04 2001-10-16 Seagate Technology Llc Recognizing and compensating for disk shift in computer disk drives
US6405449B1 (en) * 1998-06-04 2002-06-18 Seagate Technology, Llc Recognizing and compensating for disk shift in computer disk drives
US6190037B1 (en) 1999-02-19 2001-02-20 Applied Materials, Inc. Non-intrusive, on-the-fly (OTF) temperature measurement and monitoring system
US6275742B1 (en) * 1999-04-16 2001-08-14 Berkeley Process Control, Inc. Wafer aligner system
EP1045430A3 (en) * 1999-04-16 2004-05-12 Berkeley Process Control, Inc. Wafer aligner system
EP1045430A2 (en) * 1999-04-16 2000-10-18 Berkeley Process Control, Inc. Wafer aligner system
US20060180177A1 (en) * 1999-04-27 2006-08-17 Brown Brian J Semiconductor substrate cleaning system
US6575177B1 (en) 1999-04-27 2003-06-10 Applied Materials Inc. Semiconductor substrate cleaning system
US6425280B1 (en) * 1999-07-30 2002-07-30 International Business Machines Corporation Wafer alignment jig for wafer-handling systems
US6813032B1 (en) 1999-09-07 2004-11-02 Applied Materials, Inc. Method and apparatus for enhanced embedded substrate inspection through process data collection and substrate imaging techniques
US6721045B1 (en) 1999-09-07 2004-04-13 Applied Materials, Inc. Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
US6707545B1 (en) 1999-09-07 2004-03-16 Applied Materials, Inc. Optical signal routing method and apparatus providing multiple inspection collection points on semiconductor manufacturing systems
US6630995B1 (en) 1999-09-07 2003-10-07 Applied Materials, Inc. Method and apparatus for embedded substrate and system status monitoring
US6697517B1 (en) 1999-09-07 2004-02-24 Applied Magerials, Inc. Particle detection and embedded vision system to enhance substrate yield and throughput
US7012684B1 (en) 1999-09-07 2006-03-14 Applied Materials, Inc. Method and apparatus to provide for automated process verification and hierarchical substrate examination
US6693708B1 (en) 1999-09-07 2004-02-17 Applied Materials, Inc. Method and apparatus for substrate surface inspection using spectral profiling techniques
US6471464B1 (en) 1999-10-08 2002-10-29 Applied Materials, Inc. Wafer positioning device
US20010049880A1 (en) * 2000-05-25 2001-12-13 Nikon Corporation Carrier shape measurement device
US6760115B2 (en) * 2000-05-25 2004-07-06 Nikon Corporation Carrier shape measurement device
US6327517B1 (en) 2000-07-27 2001-12-04 Applied Materials, Inc. Apparatus for on-the-fly center finding and notch aligning for wafer handling robots
US20020071129A1 (en) * 2000-12-07 2002-06-13 Ulvac, Inc Axis determination apparatus, film-thickness measurement apparatus, deposition apparatus, axis determination method, and film-thickness measurement method
US6753964B2 (en) * 2000-12-07 2004-06-22 Ulvac, Inc. Axis determination apparatus, film-thickness measurement apparatus, deposition apparatus, axis determination method, and film-thickness measurement method
US6697206B2 (en) 2000-12-19 2004-02-24 Imation Corp. Tape edge monitoring
KR100389129B1 (en) * 2001-03-06 2003-06-25 삼성전자주식회사 Multi-function wafer aligner
US20040089220A1 (en) * 2001-05-22 2004-05-13 Saint-Gobain Ceramics & Plastics, Inc. Materials for use in optical and optoelectronic applications
US20040151574A1 (en) * 2001-05-29 2004-08-05 Zhimin Lu Method and apparatus to correct wafer drift
US7008802B2 (en) 2001-05-29 2006-03-07 Asm America, Inc. Method and apparatus to correct water drift
US20070085905A1 (en) * 2001-06-19 2007-04-19 Batson Don T Method and apparatus for substrate imaging
US7969465B2 (en) 2001-06-19 2011-06-28 Applied Materials, Inc. Method and apparatus for substrate imaging
US20030196343A1 (en) * 2002-04-11 2003-10-23 Michael Abraham Measurement module
DE10217028C1 (en) * 2002-04-11 2003-11-20 Nanophotonics Ag Measuring module for wafer production plants
US20080010845A1 (en) * 2002-04-26 2008-01-17 Accretech Usa, Inc. Apparatus for cleaning a wafer substrate
US6900877B2 (en) 2002-06-12 2005-05-31 Asm American, Inc. Semiconductor wafer position shift measurement and correction
US20040258514A1 (en) * 2002-06-12 2004-12-23 Ivo Raaijmakers Semiconductor wafer position shift measurement and correction
US7248931B2 (en) 2002-06-12 2007-07-24 Asm America, Inc. Semiconductor wafer position shift measurement and correction
US7355394B2 (en) * 2002-12-13 2008-04-08 Applied Materials, Inc. Apparatus and method of dynamically measuring thickness of a layer of a substrate
US7777483B2 (en) 2002-12-13 2010-08-17 Applied Materials, Inc. Method and apparatus for measuring a thickness of a layer of a wafer
US20040140797A1 (en) * 2002-12-13 2004-07-22 Applied Materials, Inc. Method and apparatus for measuring object thickness
US20080186022A1 (en) * 2002-12-13 2008-08-07 Applied Materials, Inc., A Delaware Corporation Method and apparatus for measuring object thickness
US20070063698A1 (en) * 2002-12-13 2007-03-22 Applied Materials, Inc. Method and apparatus for measuring object thickness
US7112961B2 (en) * 2002-12-13 2006-09-26 Applied Materials, Inc. Method and apparatus for dynamically measuring the thickness of an object
US20050023490A1 (en) * 2003-07-29 2005-02-03 Imation Corp. Edge sensing of data storage media
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US20050061230A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US20050061231A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US20050061229A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Optical spinel articles and methods for forming same
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US20050064246A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7751929B1 (en) * 2004-04-19 2010-07-06 Amazon Technologies, Inc. Package handling system with kickout labeling
US20050248754A1 (en) * 2004-05-05 2005-11-10 Chun-Sheng Wang Wafer aligner with WEE (water edge exposure) function
US7156328B2 (en) * 2004-12-22 2007-01-02 Trimble Navigation Ltd. System and method for determining a pivot center and radius based on a least squares approach
US20060131450A1 (en) * 2004-12-22 2006-06-22 Trimble Navigation Ltd. System and method for determining a pivot center and radius based on a least squares approach
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
US7346415B2 (en) * 2005-02-28 2008-03-18 Nitto Denko Corporation Semiconductor wafer positioning method, and apparatus using the same
US20060194406A1 (en) * 2005-02-28 2006-08-31 Nitto Denko Corporation Semiconductor wafer positioning method, and apparatus using the same
US20130084390A1 (en) * 2005-03-17 2013-04-04 Kunihiko Suzuki Film-forming apparatus and film-forming method
US20060215152A1 (en) * 2005-03-22 2006-09-28 Olympus Corporation Substrate processing apparatus and substrate housing method
US7747343B2 (en) * 2005-03-22 2010-06-29 Olympus Corporation Substrate processing apparatus and substrate housing method
US20060287761A1 (en) * 2005-06-16 2006-12-21 Shigeru Ishizawa Transfer mechanism and semiconductor processing system
US7532940B2 (en) 2005-06-16 2009-05-12 Tokyo Electron Limited Transfer mechanism and semiconductor processing system
US7493231B2 (en) * 2005-07-27 2009-02-17 Ottmar Graf Process for determining the actual position of a rotation axis of a transportation mechanism
US20070150226A1 (en) * 2005-07-27 2007-06-28 Ottmar Graf Process for determining the actual position of a rotation axis of a transportation mechanism
WO2007015975A3 (en) * 2005-07-27 2007-12-06 Mattson Tech Inc Process for determining the actual position of a rotation axis of a transportation mechanism
WO2007015975A2 (en) * 2005-07-27 2007-02-08 Mattson Technology, Inc. Process for determining the actual position of a rotation axis of a transportation mechanism
US7497026B2 (en) * 2007-01-11 2009-03-03 Sokudo Co., Ltd. Method and system for detection of wafer centering in a track lithography tool
US20080168673A1 (en) * 2007-01-11 2008-07-17 Sokudo Co., Ltd. Method and system for detection of wafer centering in a track lithography tool
US8337278B2 (en) 2007-09-24 2012-12-25 Applied Materials, Inc. Wafer edge characterization by successive radius measurements
US20090093906A1 (en) * 2007-10-04 2009-04-09 Asm Japan K.K. Position sensor system for substrate transfer robot
US8041450B2 (en) 2007-10-04 2011-10-18 Asm Japan K.K. Position sensor system for substrate transfer robot
US20090155452A1 (en) * 2007-12-13 2009-06-18 Asm Genitech Korea Ltd. Thin film deposition apparatus and method thereof
US8347813B2 (en) 2007-12-13 2013-01-08 Asm Genitech Korea Ltd. Thin film deposition apparatus and method thereof
US8954287B2 (en) 2007-12-27 2015-02-10 Lam Research Corporation Systems and methods for calibrating end effector alignment using at least a light source
US8751047B2 (en) 2007-12-27 2014-06-10 Lam Research Corporation Systems and methods for calibrating end effector alignment in a plasma processing system
US20100277749A1 (en) * 2007-12-27 2010-11-04 Matt Rodnick Arrangements and methods for determining positions and offsets
US20100280790A1 (en) * 2007-12-27 2010-11-04 Matt Rodnick Systems and methods for calibrating end effector alignment using at least a light source
US9269529B2 (en) 2007-12-27 2016-02-23 Lam Research Corporation Systems and methods for dynamic alignment beam calibration
US8860955B2 (en) * 2007-12-27 2014-10-14 Lam Research Corporation Arrangements and methods for determining positions and offsets
US20100272347A1 (en) * 2007-12-27 2010-10-28 Matt Rodnick Systems and methods for dynamic alignment beam calibration
US20100271229A1 (en) * 2007-12-27 2010-10-28 Christine Allen-Blanchette Systems and methods for calibrating end effector alignment in a plasma processing system
US8273178B2 (en) 2008-02-28 2012-09-25 Asm Genitech Korea Ltd. Thin film deposition apparatus and method of maintaining the same
US20090252580A1 (en) * 2008-04-03 2009-10-08 Asm Japan K.K. Wafer processing apparatus with wafer alignment device
US7963736B2 (en) 2008-04-03 2011-06-21 Asm Japan K.K. Wafer processing apparatus with wafer alignment device
US20100158644A1 (en) * 2008-12-22 2010-06-24 Asm Japan K.K. Semiconductor-processing apparatus equipped with robot diagnostic module
US8666551B2 (en) 2008-12-22 2014-03-04 Asm Japan K.K. Semiconductor-processing apparatus equipped with robot diagnostic module
US20120068420A1 (en) * 2010-03-28 2012-03-22 Ophir Optronics Ltd. Centering method for optical elements
US9082802B2 (en) * 2011-11-28 2015-07-14 Macronix International Co., Ltd. Wafer centering hardware design and process
US20130138238A1 (en) * 2011-11-28 2013-05-30 Macronix International Co., Ltd. Wafer centering hardware design and process
CN104465472A (en) * 2013-09-22 2015-03-25 盛美半导体设备(上海)有限公司 Alignment device and method
CN110634786A (en) * 2013-09-22 2019-12-31 盛美半导体设备(上海)有限公司 Alignment device and alignment method
CN104465472B (en) * 2013-09-22 2020-05-19 盛美半导体设备(上海)股份有限公司 Alignment device and alignment method
WO2015179233A1 (en) * 2014-05-17 2015-11-26 Kla-Tencor Corporation Wafer edge detection and inspection
US9377416B2 (en) 2014-05-17 2016-06-28 Kla-Tencor Corp. Wafer edge detection and inspection
US9831110B2 (en) 2015-07-30 2017-11-28 Lam Research Corporation Vision-based wafer notch position measurement
US9966290B2 (en) 2015-07-30 2018-05-08 Lam Research Corporation System and method for wafer alignment and centering with CCD camera and robot

Also Published As

Publication number Publication date
JP2000508070A (en) 2000-06-27
WO1997037376A1 (en) 1997-10-09
EP0958594A1 (en) 1999-11-24

Similar Documents

Publication Publication Date Title
US5822213A (en) Method and apparatus for determining the center and orientation of a wafer-like object
US5644400A (en) Method and apparatus for determining the center and orientation of a wafer-like object
TWI457685B (en) Offset correction methods and arrangement for positioning and inspecting substrates
TWI431704B (en) Offset correction techniques for positioning substrates
US4833790A (en) Method and system for locating and positioning circular workpieces
US5825913A (en) System for finding the orientation of a wafer
US4328553A (en) Method and apparatus for targetless wafer alignment
US5546179A (en) Method and apparatus for mapping the edge and other characteristics of a workpiece
JP2995707B2 (en) High precision component matching sensor system
US7315373B2 (en) Wafer positioning method and device, wafer process system, and wafer seat rotation axis positioning method for wafer positioning device
US20150198899A1 (en) Mark detecting method
KR20070058354A (en) Method for determining position of semiconductor wafer, and apparatus using the same
JP2000340639A (en) Alignment device and alignment method for disk-like element
EP3082155B1 (en) Substrate processing apparatus and substrate processing method
US6342705B1 (en) System for locating and measuring an index mark on an edge of a wafer
JP4226241B2 (en) Wafer positioning method, positioning apparatus and processing system
JP2558484B2 (en) Wafer positioning device
JPS61278149A (en) Positioning device for wafer
JP2006010466A (en) Method and apparatus for measuring flatness of board
JPH05160245A (en) Circular board positioning apparatus
US7142314B2 (en) Wafer stage position calibration method and system
JP2997360B2 (en) Positioning device
JPH10177973A (en) Blade displacement detecting device
JPH0649958U (en) Semiconductor wafer thickness measuring machine
US20230243639A1 (en) Measuring method

Legal Events

Date Code Title Description
AS Assignment

Owner name: LAM RESEARCH CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUYNH, TAC;REEL/FRAME:007939/0246

Effective date: 19960328

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12