US3837851A - Photoconductor overcoated with triarylpyrazoline charge transport layer - Google Patents

Photoconductor overcoated with triarylpyrazoline charge transport layer Download PDF

Info

Publication number
US3837851A
US3837851A US00323677A US32367773A US3837851A US 3837851 A US3837851 A US 3837851A US 00323677 A US00323677 A US 00323677A US 32367773 A US32367773 A US 32367773A US 3837851 A US3837851 A US 3837851A
Authority
US
United States
Prior art keywords
charge
charge transport
transport layer
photoconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00323677A
Inventor
M Shattuck
W Weiche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US00323677A priority Critical patent/US3837851A/en
Priority to IT41025/73A priority patent/IT1001106B/en
Priority to FR7345363A priority patent/FR2214139B1/fr
Priority to CH1750673A priority patent/CH579789A5/xx
Priority to CA188,761A priority patent/CA1005674A/en
Priority to GB49074A priority patent/GB1441996A/en
Priority to NL7400140A priority patent/NL7400140A/xx
Priority to DE2401219A priority patent/DE2401219C3/en
Priority to JP49006089A priority patent/JPS592023B2/en
Priority to BE139772A priority patent/BE809704A/en
Application granted granted Critical
Publication of US3837851A publication Critical patent/US3837851A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0436Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0631Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings

Definitions

  • ABSTRACT Electrophotographic plates having a charge generation layer and a separate charge transport layer comprising a tri-aryl pyrazoline compound having the formula:
  • n is Zero or one, and A, A and A are each aryl radicals.
  • the present invention is concerned with layered electrophotographic plates.
  • the charge transporting layer always comprises at least one tri-aryl pyrazoline compound having the formula:
  • n is zero or one, and A, A and A are each aryl radicals.
  • pyrazoline compounds useful in the present invention are known materials and their preparation has been described in the literature. The prior art teaches that such materials are known to be photoconductors. The photoconductive nature of pyrazolines is taught in U.S. Pat. Nos. 3,180,729 and 3,549,362.
  • pyrazoline compounds useful in the present invention are those having the formula wherein n is zero or one, and A, A and A are each aryl radicals.
  • n l in which case the materials may be classified chemically as styryl pyrazolines. It is also preferred that one or more of the aryl groups be substituted, most preferably with groups known in the art to be electron donating groups. The most preferred substituent groups are methoxy, ethoxy, dimethyl amino, diethyl amino an the like. It is not preferred to substitute the aryl groups with electron withdrawing groups such as nitro and cyano.
  • electrophotographic reproduction processes differ in the particular way in which they are carried out, particularly in the sequence in which electric charging (usually with a corona) and illumination are carried out. All electrophotographic reproduction processes, however, involve the process step.of selectively rendering portions of a photoconductor electrically conductive by selective exposure to light.
  • the charge transport layers of the present invention are useful in making electrophotographic plates useful in all such processes.
  • the charge transport layers may be used with any of a wide variety of separate charge generating layers.
  • the charge generating layer may be selenium or an alloy of selenium. It may be other inorganic materials such as compounds from groups II and VI of the periodic table, for example cadmium sulfo-selenide.
  • the charge generating material may be an organic material, for example a cyanine compound such as those shown in US. Pat. application Ser. No. 129,637, a disazo compound such as those shown in U.S. Pat. application Ser. No. 129,635, now abandoned, or a phthalocyanine compound. Particularly outstanding results have been obtained when the charge generating layer comprises a compound which is a methine dye derived from squaric acid. Materials of this type are discussed in U.S. Pat. application Ser. No. 323,678 filed on even date herewith.
  • the charge transport layers of the present invention may be used either on top of the charge generating layer, or beneath the charge generating layer. For mechanical reasons, it is generally preferred that the charge transport layer be on top.
  • the charge transport layer may vary considerably in thickness, in general being from about 10 to about 30 microns thick, preferably from about 15 to about 25.
  • the electrophotographic plate should be charged negatively.
  • the electrophotographic plate should be charged positively. The theoretical explanation for this is not known with certainty. It is theorized that the pyrazoline charge transport layers of the present invention operate by transporting holes, and this explanation would be consistent with those data.
  • Photoconductivity involves at least two steps: (1 the generation of charge, and (2) the transportation of charge.
  • the present invention utilizes the ability of the pyrazoline containing layer to transport the charge generated in the separate charge generating layer.
  • the pyrazoline containing materials have the unexpected ability not only to transport the charge, but also to accept injection of the charge, that is, to allow the charge to cross the interface between the separate charge generating layer and the charge transport layer. This is true with both organic and inorganic charge generation layers.
  • the pyrazoline compounds of the present invention have the additional advantage of being film forming. They may, therefore, be used by themselves to form the charge transport layer. For mechanical reasons, however, it is generally preferred to use them in conjunction with a binder. In most instances it is preferred to use roughly from about 1 part to about 3 parts by weight binder to one part by weight pyrazoline. Many types of binder materials such as resins are known to the prior art. Particularly good results have been obtained using polyester resins and polycarbonates. Polyvinylidene chloride and polystyrene may also be used, as may acrylic resins of low molecular weight.
  • EXAMPLE 1 A charge generating layer consisting of 68% Se, 30% Te, and 2% As (weight percent) evaporated on a conductive substrate which was dip coated with a barrier layer with a dry thickness of approximately 0.3 microns.
  • the barrier layer was coated with a solution of 3 parts polyester (Goodyear VPE 200) and 1 part lphenyl-3-[p-dimethylaminostyryl]-5-[p-dimethylaminophenyl]pyrazoline which had been dissolved in tetrahydrofuran. Method of coating was knife blade with a wet gap setting of 5 mils.
  • the composite layer was heated 16 hours at 55 C with a resulting dry thickness of 15 microns.
  • the photoconductor was corona charged in the dark to a negative voltage of approximately 700 volts.
  • the sample was then exposed to a light source of a photocopy green lamp.
  • the initial dark charge was reduced to 200 V with an exposure of 0.33 micro joules/cm?
  • EXAMPLE 2 A solution prepared from tetrahydrofuran and consisting of 3 parts of polyester and 1 part pyrazoline (as in Example No. 1) was knife blade coated at a wet thickness of 5 mils on a conductive substrate. The layer was dried for 2 hours at approximately 80C to remove excess solvent. Dry thickness was approximately 12 microns.
  • the photoconductor was charged on a rotating disc electrometer to a negative voltage of 600 volts.
  • Exposure to a tungsten source reduced the dark charge to 500 Volts (approximately 20 percent decay) after 4.0 seconds.
  • the layered photoconductor from Example No. l was dark charged on the rotating disc electrometer to a negative voltage of 880 V and exposed to the tungsten source plus a 1.47 neutral density filter plus opal glass.
  • the original dark charge of 880 was reduced 20 percent after 0.15 sec. (70X increase) and to a 200 volt level in 0.7 seconds.
  • EXAMPLE 3 Approximately 1 gram of a cyanine dye, 3-ethyl-2[5- '(3-ethyl-2-benzothiazolinylidene )-l ,S-pentadienyl] benzothiazolium iodide was placed in a McCrone micronizing mill (a vibro-energy laboratory mill available from McCrone Research Associates, London, England) and was ground as a dry powder for 60 minutes. Approximately grams of tetrahydrofuran and 0. 15 g of a polyvinylbutyral resin Vinylite XYHL (available from Union Carbide and Carbon Company) was added to the powder and was ground for an additional 30 minutes.
  • a McCrone micronizing mill a vibro-energy laboratory mill available from McCrone Research Associates, London, England
  • the resultant slurry was reduced in concentration by additional tetrahydrofuran and was applied to an volts.
  • the sample was exposed to a tungsten light source filtered with wavelength filters to give maximum intensity at approximately 5.500 angstroms.
  • the initial dark voltage of 700 volts was reduced to 200 volts by an exposure of approximately 07 micro joules/cm".
  • EXAMPLE 4 A selenium alloy charge generating layer was prepared in the same manner as Example No. I The layer was dip coated with a solution of one part polyester and one part l-phenyl-3-[p-methoxystyryl]-5-[p'methoxy phenyll-pyrazoline dissolved in tetrahydrofuran. The coating was dried for 40 hours at C to remove excess solvent with a resulting dry thickness of 16 to 18 microns.
  • a selenium alloy charge generating layer was prepared in the same manner as Example No. l. The layer was dip coated with a solution of two parts polyester and one part l-phenyl-3-[p-diethylaminostyryl]-5-[pdiethylaminophenyl]-pyrazoline dissolved in tetrahydrofuran. The coating was dried for 72 hours at C to remove excess solvent with a resulting dry thickness of 15 microns.
  • the photoconductor was corona charged in the dark to a negative charge of 700 volts and then was exposed to a photo-copy green lamp. The initial dark charge was reduced to 200 volts with an exposure of 0.24 micro joules/cm?
  • EXAMPLE 6 A charge generating layer consisting of a Se alloy was evaporated directly onto a conductive substrate. A charge transport layer was formulated and coated in the same manner as Example No. 5.
  • a charge generating layer consisting of Cd S Se approximately 0.3 microns thick was coated on a conductive substrate by a chemical vapor deposition technique.
  • a charge transport layer consisting of 3 parts polyester and one part l-phenyl-3-[ pdimethylaminostyry] ]-5 -[p-dimethylamino phenyl]- pyrazoline was knife coated to a dry thickness of approximately six microns.
  • the photoconductor was dark charged on a rotating disc electrometer to a negative charge of 390 volts.
  • the sample was exposed to a tungsten source with the initial dark charge being reduced to 200 volts in 0.15 sec.
  • EXAMPLE 8 A charge transport layer consisting of two parts polyester and one part l-phenyl-3[p-diethylaminostyryl1- S-[p-diethylamino phenyH-pyrazoline was dissolved in a suitable solvent. The solution was dip coated in a conductive substrate and dried to an approximate thickness of microns. A charge generating layer consisting of 2-p-dimethylaminostyrylquinoline ethiodide dye was rubbed onto the surface of the transport layer (thickness, less than 2 microns).
  • the photoconductor was then positively charged on a rotating disk electrometer to a dark charge of 720 volts.
  • the initial dark charge was decayed with a tungsten lamp to 200 volts in 0.80 seconds.
  • EXAMPLE 9 A second charge transport layer prepared in the same manner as in Example No. 7 was coated with a thin dye layer of pyrazlone red.
  • the photoconductor was positively charged to a dark voltage of 920 volts on the rotating disc electrometer.
  • the initial dark voltage was then reduced with a tungsten exposure source to 200 volts in 0.70 seconds.
  • An electrophotographic process comprising the steps of negatively charging and image-wise exposing to light an electrophotographic plate comprising a conductive substrate, a layer comprising a photoconductor selected from the group consisting of selenium and its alloys, compounds of an element from Group II and an element from Group VI of the periodic table, cyanine compounds, disazo compounds, and phthalocyanine compounds, and, overcoating said layer of photoconductor, a separate layer from 10 to 30 microns thick comprising a compound having the formula:

Abstract

Electrophotographic plates are provided having a charge generation layer and a separate charge transport layer comprising a tri-aryl pyrazoline compound having the formula:

WHEREIN N IS ZERO OR ONE, AND A, A1 and A2 are each aryl radicals.

Description

United States Patent 11 1 Shattuck et a1.
1 1 Sept. 24, 1974 1 PHOTOCONDUCTOR OVERCOAT ED WITH TRIARYLPYRAZOLINE CHARGE TRANSPORT LAYER [75] Inventors: Meredith David Shattuck, San Jose;
William Joseph Weiche, Los Gatos, both of Calif.
[73] Assignee: International Business Machines Corporation, Armonk, NY.
[22] Filed: Jan. 15, 1973 [21] Appl. No.: 323,677
52 0.5. Ci 96/1.5, 96/1.6, 252/501, 117/215,117/218 51 1111. C1. G03g s/04, 003 5/06, 003 5/08 3,549,362 12/1970 Carpenter et a1 96/1.6 3,598,582 8/1971 Herrick et al 1 96/1.5 3,684,548 8/1972 Contois 96/1.6 X
FOREIGN PATENTS OR APPLICATIONS 4,326,710 11/1968 Japan 96/1.6 1,030,024 5/1966 Great Britain 96/1.5
Primary ExaminerR0land E. Martin, Jr. Attorney, Agent, or Firm-J0seph G. Walsh [57] ABSTRACT Electrophotographic plates are provided having a charge generation layer and a separate charge transport layer comprising a tri-aryl pyrazoline compound having the formula:
wherein n is Zero or one, and A, A and A are each aryl radicals.
4 Claims, No Drawings PHOTOCONDUCTOR OVERCOATED WITH TRIARYLPYRAZOLINE CHARGE TRANSPORT LAYER FIELD OF THE INVENTION The present invention is concerned with layered electrophotographic plates. In particular it is concerned with electrophotographic plates having a charge generating layer and a separate charge transporting layer. According to the present invention, the charge transporting layer always comprises at least one tri-aryl pyrazoline compound having the formula:
wherein n is zero or one, and A, A and A are each aryl radicals.
PRIOR ART The pyrazoline compounds useful in the present invention are known materials and their preparation has been described in the literature. The prior art teaches that such materials are known to be photoconductors. The photoconductive nature of pyrazolines is taught in U.S. Pat. Nos. 3,180,729 and 3,549,362.
SUMMARY OF THE INVENTION It has now been found that electrophotographic plates having unexpected advantages can be prepared using certain pyrazoline compounds in a charge transport layer which is used in conjunction with a separate charge generating layer.
the pyrazoline compounds useful in the present invention are those having the formula wherein n is zero or one, and A, A and A are each aryl radicals.
In this formula it is preferred that n l, in which case the materials may be classified chemically as styryl pyrazolines. It is also preferred that one or more of the aryl groups be substituted, most preferably with groups known in the art to be electron donating groups. The most preferred substituent groups are methoxy, ethoxy, dimethyl amino, diethyl amino an the like. It is not preferred to substitute the aryl groups with electron withdrawing groups such as nitro and cyano.
There are several well known electrophotographic reproduction processes in current use. They differ in the particular way in which they are carried out, particularly in the sequence in which electric charging (usually with a corona) and illumination are carried out. All electrophotographic reproduction processes, however, involve the process step.of selectively rendering portions of a photoconductor electrically conductive by selective exposure to light. The charge transport layers of the present invention are useful in making electrophotographic plates useful in all such processes.
It is one of the unexpected advantages of the present invention that the charge transport layers may be used with any of a wide variety of separate charge generating layers. For example, the charge generating layer may be selenium or an alloy of selenium. It may be other inorganic materials such as compounds from groups II and VI of the periodic table, for example cadmium sulfo-selenide. Alternatively, the charge generating material may be an organic material, for example a cyanine compound such as those shown in US. Pat. application Ser. No. 129,637, a disazo compound such as those shown in U.S. Pat. application Ser. No. 129,635, now abandoned, or a phthalocyanine compound. Particularly outstanding results have been obtained when the charge generating layer comprises a compound which is a methine dye derived from squaric acid. Materials of this type are discussed in U.S. Pat. application Ser. No. 323,678 filed on even date herewith.
The charge transport layers of the present invention may be used either on top of the charge generating layer, or beneath the charge generating layer. For mechanical reasons, it is generally preferred that the charge transport layer be on top. The charge transport layer may vary considerably in thickness, in general being from about 10 to about 30 microns thick, preferably from about 15 to about 25. When the charge transport layer is on top of the charge generating layer, i.e. when the charge generating layer is between the charge transport layer and the conductive substrate, the electrophotographic plate should be charged negatively. In those instances where the charge transport layer is beneath the charge generating layer, that is, when the charge transport layer is between the charge generating layer and the conductive substrate, the electrophotographic plate should be charged positively. The theoretical explanation for this is not known with certainty. It is theorized that the pyrazoline charge transport layers of the present invention operate by transporting holes, and this explanation would be consistent with those data.
Photoconductivity involves at least two steps: (1 the generation of charge, and (2) the transportation of charge. The present invention utilizes the ability of the pyrazoline containing layer to transport the charge generated in the separate charge generating layer. Among the unexpected advantages of the present invention, it should be particularly mentioned that the pyrazoline containing materials have the unexpected ability not only to transport the charge, but also to accept injection of the charge, that is, to allow the charge to cross the interface between the separate charge generating layer and the charge transport layer. This is true with both organic and inorganic charge generation layers.
The pyrazoline compounds of the present invention have the additional advantage of being film forming. They may, therefore, be used by themselves to form the charge transport layer. For mechanical reasons, however, it is generally preferred to use them in conjunction with a binder. In most instances it is preferred to use roughly from about 1 part to about 3 parts by weight binder to one part by weight pyrazoline. Many types of binder materials such as resins are known to the prior art. Particularly good results have been obtained using polyester resins and polycarbonates. Polyvinylidene chloride and polystyrene may also be used, as may acrylic resins of low molecular weight.
The following Examples are given solely for purposes of illustration and are not to be considered limitations on the invention, many variations of which are possible without departing from the spirit or scope thereof.
EXAMPLE 1 A charge generating layer consisting of 68% Se, 30% Te, and 2% As (weight percent) evaporated on a conductive substrate which was dip coated with a barrier layer with a dry thickness of approximately 0.3 microns. The barrier layer was coated with a solution of 3 parts polyester (Goodyear VPE 200) and 1 part lphenyl-3-[p-dimethylaminostyryl]-5-[p-dimethylaminophenyl]pyrazoline which had been dissolved in tetrahydrofuran. Method of coating was knife blade with a wet gap setting of 5 mils. The composite layer was heated 16 hours at 55 C with a resulting dry thickness of 15 microns.
The photoconductor was corona charged in the dark to a negative voltage of approximately 700 volts. The sample was then exposed to a light source of a photocopy green lamp. The initial dark charge was reduced to 200 V with an exposure of 0.33 micro joules/cm? EXAMPLE 2 A solution prepared from tetrahydrofuran and consisting of 3 parts of polyester and 1 part pyrazoline (as in Example No. 1) was knife blade coated at a wet thickness of 5 mils on a conductive substrate. The layer was dried for 2 hours at approximately 80C to remove excess solvent. Dry thickness was approximately 12 microns. The photoconductor was charged on a rotating disc electrometer to a negative voltage of 600 volts. Exposure to a tungsten source reduced the dark charge to 500 Volts (approximately 20 percent decay) after 4.0 seconds. By comparison, the layered photoconductor from Example No. l was dark charged on the rotating disc electrometer to a negative voltage of 880 V and exposed to the tungsten source plus a 1.47 neutral density filter plus opal glass. The original dark charge of 880 was reduced 20 percent after 0.15 sec. (70X increase) and to a 200 volt level in 0.7 seconds.
EXAMPLE 3 Approximately 1 gram of a cyanine dye, 3-ethyl-2[5- '(3-ethyl-2-benzothiazolinylidene )-l ,S-pentadienyl] benzothiazolium iodide was placed in a McCrone micronizing mill (a vibro-energy laboratory mill available from McCrone Research Associates, London, England) and was ground as a dry powder for 60 minutes. Approximately grams of tetrahydrofuran and 0. 15 g of a polyvinylbutyral resin Vinylite XYHL (available from Union Carbide and Carbon Company) was added to the powder and was ground for an additional 30 minutes. The resultant slurry was reduced in concentration by additional tetrahydrofuran and was applied to an volts. The sample was exposed to a tungsten light source filtered with wavelength filters to give maximum intensity at approximately 5.500 angstroms. The initial dark voltage of 700 volts was reduced to 200 volts by an exposure of approximately 07 micro joules/cm".
EXAMPLE 4 A selenium alloy charge generating layer was prepared in the same manner as Example No. I The layer was dip coated with a solution of one part polyester and one part l-phenyl-3-[p-methoxystyryl]-5-[p'methoxy phenyll-pyrazoline dissolved in tetrahydrofuran. The coating was dried for 40 hours at C to remove excess solvent with a resulting dry thickness of 16 to 18 microns.
The photoconductive plate was negatively charged in the dark to approximately 700 volts. The plate was then exposed to a photocopy green lamp. The initial dark charge was reduced to 200 volts with an exposure of 0.32 micro joules/cm? EXAMPLE 5 A selenium alloy charge generating layer was prepared in the same manner as Example No. l. The layer was dip coated with a solution of two parts polyester and one part l-phenyl-3-[p-diethylaminostyryl]-5-[pdiethylaminophenyl]-pyrazoline dissolved in tetrahydrofuran. The coating was dried for 72 hours at C to remove excess solvent with a resulting dry thickness of 15 microns.
The photoconductor was corona charged in the dark to a negative charge of 700 volts and then was exposed to a photo-copy green lamp. The initial dark charge was reduced to 200 volts with an exposure of 0.24 micro joules/cm? EXAMPLE 6 A charge generating layer consisting of a Se alloy was evaporated directly onto a conductive substrate. A charge transport layer was formulated and coated in the same manner as Example No. 5.
The photoconductor was corona charged in the dark to a negative voltage of approximately 600 volts. The plate was then exposed to a photocopy green light source and the dark charge reduced to 200 volts with an exposure of 0.24 micro joules/cm? EXAMPLE 7 A charge generating layer consisting of Cd S Se approximately 0.3 microns thick was coated on a conductive substrate by a chemical vapor deposition technique. A charge transport layer consisting of 3 parts polyester and one part l-phenyl-3-[ pdimethylaminostyry] ]-5 -[p-dimethylamino phenyl]- pyrazoline was knife coated to a dry thickness of approximately six microns.
The photoconductor was dark charged on a rotating disc electrometer to a negative charge of 390 volts. The sample was exposed to a tungsten source with the initial dark charge being reduced to 200 volts in 0.15 sec.
EXAMPLE 8 A charge transport layer consisting of two parts polyester and one part l-phenyl-3[p-diethylaminostyryl1- S-[p-diethylamino phenyH-pyrazoline was dissolved in a suitable solvent. The solution was dip coated in a conductive substrate and dried to an approximate thickness of microns. A charge generating layer consisting of 2-p-dimethylaminostyrylquinoline ethiodide dye was rubbed onto the surface of the transport layer (thickness, less than 2 microns).
The photoconductor was then positively charged on a rotating disk electrometer to a dark charge of 720 volts. The initial dark charge was decayed with a tungsten lamp to 200 volts in 0.80 seconds.
EXAMPLE 9 A second charge transport layer prepared in the same manner as in Example No. 7 was coated with a thin dye layer of pyrazlone red.
The photoconductor was positively charged to a dark voltage of 920 volts on the rotating disc electrometer. The initial dark voltage was then reduced with a tungsten exposure source to 200 volts in 0.70 seconds.
What is claimed is:
1. An electrophotographic process comprising the steps of negatively charging and image-wise exposing to light an electrophotographic plate comprising a conductive substrate, a layer comprising a photoconductor selected from the group consisting of selenium and its alloys, compounds of an element from Group II and an element from Group VI of the periodic table, cyanine compounds, disazo compounds, and phthalocyanine compounds, and, overcoating said layer of photoconductor, a separate layer from 10 to 30 microns thick comprising a compound having the formula:

Claims (3)

  1. 2. A process as claimed in claim 1 wherein n is one.
  2. 3. A process as claimed in claim 1 wherein the overcoat layer comprises a resin binder.
  3. 4. A process as claimed in claim 1 wherein the overcoating layer comprises the compound 1-phenyl-3-(p-diethylaminostyryl)-5-(p-diethylamino phenyl)-pyrazoline.
US00323677A 1973-01-15 1973-01-15 Photoconductor overcoated with triarylpyrazoline charge transport layer Expired - Lifetime US3837851A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00323677A US3837851A (en) 1973-01-15 1973-01-15 Photoconductor overcoated with triarylpyrazoline charge transport layer
IT41025/73A IT1001106B (en) 1973-01-15 1973-11-28 ELECTROPHOTOGRAPHIC PLATES FICATED LAYERS
FR7345363A FR2214139B1 (en) 1973-01-15 1973-12-11
CH1750673A CH579789A5 (en) 1973-01-15 1973-12-14
CA188,761A CA1005674A (en) 1973-01-15 1973-12-21 Layered electrophotographic plates
GB49074A GB1441996A (en) 1973-01-15 1974-01-04 Layered electrophotographic elements
NL7400140A NL7400140A (en) 1973-01-15 1974-01-07
DE2401219A DE2401219C3 (en) 1973-01-15 1974-01-11 Electrophotographic recording material
JP49006089A JPS592023B2 (en) 1973-01-15 1974-01-11 electrophotographic board
BE139772A BE809704A (en) 1973-01-15 1974-01-14 ELECTROPHOTOGRAPHIC PLATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00323677A US3837851A (en) 1973-01-15 1973-01-15 Photoconductor overcoated with triarylpyrazoline charge transport layer

Publications (1)

Publication Number Publication Date
US3837851A true US3837851A (en) 1974-09-24

Family

ID=23260252

Family Applications (1)

Application Number Title Priority Date Filing Date
US00323677A Expired - Lifetime US3837851A (en) 1973-01-15 1973-01-15 Photoconductor overcoated with triarylpyrazoline charge transport layer

Country Status (9)

Country Link
US (1) US3837851A (en)
JP (1) JPS592023B2 (en)
BE (1) BE809704A (en)
CA (1) CA1005674A (en)
CH (1) CH579789A5 (en)
DE (1) DE2401219C3 (en)
FR (1) FR2214139B1 (en)
IT (1) IT1001106B (en)
NL (1) NL7400140A (en)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964904A (en) * 1974-08-22 1976-06-22 Xerox Corporation Manifold imaging member and process employing a dark charge injecting layer
US3977870A (en) * 1972-09-21 1976-08-31 Hoechst Aktiengesellschaft Dual layer electrophotographic recording material
US3989520A (en) * 1972-09-21 1976-11-02 Hoechst Aktiengesellschaft Electrophotographic dual layer recording material
US3996049A (en) * 1972-08-30 1976-12-07 Hoechst Aktiengesellschaft Dual layer electrophotographic recording material
US4012251A (en) * 1975-05-22 1977-03-15 Xerox Corporation Multi-layered photoconductive member
US4030923A (en) * 1975-12-11 1977-06-21 International Business Machines Corporation Mixture of binder materials for use in connection with a charge transport layer in a photoconductor
DE2717007A1 (en) * 1976-04-19 1977-10-20 Ricoh Kk 3- (9-FLUORENYLIDEN) CARBAZOLE DERIVATIVES, PROCESS FOR THEIR MANUFACTURING AND USE IN ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MATERIALS
US4066455A (en) * 1975-11-05 1978-01-03 Eastman Kodak Company Selenium containing multi-active photoconductive element
US4090782A (en) * 1977-05-31 1978-05-23 International Business Machines Corporation Electrochromic display devices comprising thienylidene pyrazoline compounds
US4093358A (en) * 1976-12-27 1978-06-06 International Business Machines Corporation High efficiency electrochromic display device
US4123270A (en) * 1975-09-15 1978-10-31 International Business Machines Corporation Method of making electrophotographic imaging element
US4142783A (en) * 1977-05-31 1979-03-06 International Business Machines Corporation Reversible electrochromic display device having memory
EP0001599A1 (en) * 1977-10-17 1979-05-02 International Business Machines Corporation Electrophotographic recording material and its application in a copying process
US4164431A (en) * 1977-08-02 1979-08-14 Eastman Kodak Company Multilayer organic photovoltaic elements
US4231799A (en) * 1972-08-30 1980-11-04 Hoechst Aktiengesellschaft Electrophotographic recording material
US4247614A (en) * 1978-11-20 1981-01-27 Ricoh Co., Ltd. Electrophotographic element containing a disazo pigment
US4251614A (en) * 1977-07-05 1981-02-17 Ricoh Company, Ltd. Novel disazo compounds, process for the preparation of same and application of said disazo compounds and analogues thereof to electrophotographic sensitive materials
US4268596A (en) * 1978-11-27 1981-05-19 Ricoh Company, Ltd. Electrophotographic element having 1,4-bis(azostyryl)-2,5 dimethoxy benzene compounds as photoconductors
US4278746A (en) * 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
US4279981A (en) * 1977-04-22 1981-07-21 Ricoh Company, Ltd. Electrophotographic elements containing trisazo compounds
US4281053A (en) * 1979-01-22 1981-07-28 Eastman Kodak Company Multilayer organic photovoltaic elements
US4293628A (en) * 1977-01-27 1981-10-06 Ricoh Co., Ltd. Electrophotographic elements containing disazo compounds
US4299896A (en) * 1977-07-18 1981-11-10 Ricoh Co., Ltd. Electrophotographic sensitive materials containing a disazo pigment
US4302521A (en) * 1979-07-16 1981-11-24 Konishiroku Photo Industry Co., Ltd. Photosensitive element for electrophotography
US4307167A (en) * 1980-03-03 1981-12-22 International Business Machines Corporation Layered electrophotographic plate having tetramethyl benzidene based disazo dye
US4314015A (en) * 1977-07-18 1982-02-02 Ricoh Co., Ltd. Electrophotographic sensitive materials containing disazo compounds
US4314016A (en) * 1979-06-20 1982-02-02 Ricoh Co., Ltd. Electrophotographic element having a bisazo photoconductor
US4315982A (en) * 1979-08-23 1982-02-16 Copyer Co., Ltd. Styryl pyrazoline compounds, process for production thereof, and electrophoto graphic material comprising said compounds
US4348470A (en) * 1978-12-13 1982-09-07 Ricoh Co., Ltd. Electrophotographic element containing disazo compounds
US4349617A (en) * 1979-10-23 1982-09-14 Fuji Photo Film Co., Ltd. Function separated type electrophotographic light-sensitive members and process for production thereof
US4362798A (en) * 1981-05-18 1982-12-07 International Business Machines Corporation Hydrazone and pyrazoline or acetosol yellow containing charge transport layer, photoconductor and electrophotographic process using the same
US4363859A (en) * 1977-10-22 1982-12-14 Ricoh Company, Ltd. Electrophotographic photoconductor
US4369242A (en) * 1980-09-25 1983-01-18 Minnesota Mining And Manufacturing Company Non-porous and porous Al2 O3 barrier zones in layered electrophotographic device
US4399207A (en) * 1981-07-31 1983-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member with hydrazone compound
US4413045A (en) * 1981-05-26 1983-11-01 Canon Kabushiki Kaisha Multilayer electrophotographic photosensitive member comprises disazo charge generator layer, hydrazone transport layer
US4418133A (en) * 1981-03-27 1983-11-29 Canon Kabushiki Kaisha Disazo photoconductive material and electrophotographic photosensitive member having disazo pigment layer
US4423129A (en) * 1980-12-17 1983-12-27 Canon Kabushiki Kaisha Electrophotographic member having layer containing methylidenyl hydrazone compound
EP0096989A2 (en) * 1982-05-26 1983-12-28 Toray Industries, Inc. Electrophotographic photosensitive material
DE3331592A1 (en) 1982-09-01 1984-03-01 Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa DISAZO CONNECTIONS AND PHOTO-CONDUCTIVE COMPOSITIONS CONTAINING THEM AND ELECTROPHOTOGRAPHIC LIGHT-SENSITIVE RECORDING MATERIALS
US4435492A (en) 1978-10-27 1984-03-06 Hitachi, Ltd. Complex type electrophotographic plate and electrophotographic method using the same
US4446217A (en) * 1981-02-03 1984-05-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member having a hydrazone containing layer
US4454211A (en) * 1981-06-10 1984-06-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member with pyrazoline charge transport material
US4456671A (en) * 1981-12-23 1984-06-26 Canon Kabushiki Kaisha Electrophotographic photosensitive member having a photosensitive layer containing a hydrazone compound
US4487824A (en) * 1982-05-17 1984-12-11 Canon Kabushiki Kaisha Electrophotographic photosensitive member containing a halogen substituted hydrazone
US4543310A (en) * 1982-01-29 1985-09-24 Oce-Nederland B.V. Electrophotographic element and photocopying process making use of certain 4-[bis-phenylamino]benzaldehyde azines
US4554231A (en) * 1980-09-26 1985-11-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US4567125A (en) * 1982-12-09 1986-01-28 Hoechst Aktiengesellschaft Electrophotographic recording material
US4588667A (en) * 1984-05-15 1986-05-13 Xerox Corporation Electrophotographic imaging member and process comprising sputtering titanium on substrate
DE3730258A1 (en) * 1986-09-10 1988-04-07 Canon Kk ELECTROPHOTOGRAPHIC LIGHT SENSITIVE RECORDING MATERIAL, 5H-DIBENZO (A, D) CYCLOHEPTANYLIDEN DERIVATIVE, 5H-DIBENZO (A, D) CYCLOHEPTENYLIDEN DERIVATIVE AND METHOD FOR THE PRODUCTION THEREOF
US4762760A (en) * 1986-02-01 1988-08-09 Hoechst Aktiengesellschaft Electrophotographic recording material comprising a pyrazoline derivative
US4769304A (en) * 1981-04-27 1988-09-06 Fuji Photo Film Co., Ltd. Photoconductive composition and electro-photographic light-sensitive material using said composition
US4883731A (en) * 1988-01-04 1989-11-28 Xerox Corporation Imaging system
US4931371A (en) * 1987-11-24 1990-06-05 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5032479A (en) * 1988-06-21 1991-07-16 Kao Corporation Ion transport photoreceptor for electrophotography
US5079118A (en) * 1989-01-20 1992-01-07 Canon Kabushiki Kaisha Photosensitive member for electrophotography with substituted pyrene
US5116709A (en) * 1989-06-13 1992-05-26 Industrial Technology Research Institute Electrophotoreceptor using styrene-maleic anhydride copolymer as the polymeric binder
US5120628A (en) * 1989-12-12 1992-06-09 Xerox Corporation Transparent photoreceptor overcoatings
US5215842A (en) * 1990-01-08 1993-06-01 Hitachi, Ltd. Photosensitive element for electrophotography
US5262261A (en) * 1988-12-29 1993-11-16 Canon Kabushiki Kaisha Photosensitive member for electrophotography
US5324608A (en) * 1992-11-23 1994-06-28 Mitsubishi Kasei America, Inc. Photoconductor drum, having a non-conductive layer, with an area of electrical contact and method of manufacturing the same
US5466550A (en) * 1991-02-08 1995-11-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus, device unit and facsimile machine using the same
US5554473A (en) * 1994-11-23 1996-09-10 Mitsubishi Chemical America, Inc. Photoreceptor having charge transport layers containing a copolycarbonate and layer containing same
US5876890A (en) * 1996-05-27 1999-03-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member and apparatus and process cartridge provided with the same
US5876888A (en) * 1996-07-04 1999-03-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and apparatus and process cartridge provided with the same
US5935747A (en) * 1996-06-07 1999-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member
US5952142A (en) * 1997-07-31 1999-09-14 Oce-Technologies, B.V. Azine-containing photoconductive element
US6017665A (en) * 1998-02-26 2000-01-25 Mitsubishi Chemical America Charge generation layers and charge transport layers and organic photoconductive imaging receptors containing the same, and method for preparing the same
US6093515A (en) * 1997-08-29 2000-07-25 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6146800A (en) * 1997-10-17 2000-11-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6180302B1 (en) 1997-10-27 2001-01-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus provided with the electrophotographic member
US6405005B1 (en) 1998-04-30 2002-06-11 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus
US6410195B1 (en) 1999-08-12 2002-06-25 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6703174B2 (en) 2001-01-31 2004-03-09 Canon Kabushiki Kaisha Electrophotographic apparatus and process cartridge
EP1515191A2 (en) 2003-09-05 2005-03-16 Xerox Corporation Dual charge transport layer and photoconductive imaging member including the same
US20060284194A1 (en) * 2005-06-20 2006-12-21 Xerox Corporation Imaging member
US20070037081A1 (en) * 2005-08-09 2007-02-15 Xerox Corporation Anticurl backing layer for electrostatographic imaging members
US20070059622A1 (en) * 2005-09-15 2007-03-15 Xerox Corporation Mechanically robust imaging member overcoat
US20070059623A1 (en) * 2005-09-15 2007-03-15 Xerox Corporation Anticurl back coating layer for electrophotographic imaging members
WO2007038425A2 (en) * 2005-09-27 2007-04-05 Regents Of The University Of Minnesota Anti-viral compouinds
US20070141487A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Imaging member
US20070141493A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Imaging member
US20070148573A1 (en) * 2005-12-27 2007-06-28 Xerox Corporation Imaging member
US20070148575A1 (en) * 2005-12-27 2007-06-28 Xerox Corporation Imaging member
US20070292797A1 (en) * 2006-06-20 2007-12-20 Xerox Corporation Imaging member having adjustable friction anticurl back coating
US20070298340A1 (en) * 2006-06-22 2007-12-27 Xerox Corporation Imaging member having nano-sized phase separation in various layers
US20080050665A1 (en) * 2006-08-23 2008-02-28 Xerox Corporation Imaging member having high molecular weight binder
US20090167167A1 (en) * 2006-06-05 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
US7582399B1 (en) 2006-06-22 2009-09-01 Xerox Corporation Imaging member having nano polymeric gel particles in various layers
US20090253063A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253060A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253056A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253058A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253059A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253062A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US7642028B2 (en) 2005-03-17 2010-01-05 Xerox Corporation Imaging members
US20100279218A1 (en) * 2009-05-01 2010-11-04 Xerox Corporation Flexible imaging members without anticurl layer
US20100279217A1 (en) * 2009-05-01 2010-11-04 Xerox Corporation Structurally simplified flexible imaging members
US20100279219A1 (en) * 2009-05-01 2010-11-04 Xerox Corporation Flexible imaging members without anticurl layer
EP2253998A1 (en) 2009-05-22 2010-11-24 Xerox Corporation Flexible imaging members having a plasticized imaging layer
US20100302169A1 (en) * 2009-06-01 2010-12-02 Apple Inc. Keyboard with increased control of backlit keys
US20100304285A1 (en) * 2009-06-01 2010-12-02 Xerox Corporation Crack resistant imaging member preparation and processing method
EP2290449A1 (en) 2009-08-31 2011-03-02 Xerox Corporation Flexible imaging member belts
EP2290450A1 (en) 2009-08-31 2011-03-02 Xerox Corporation Flexible imaging member belts
US20110136049A1 (en) * 2009-12-08 2011-06-09 Xerox Corporation Imaging members comprising fluoroketone
US8232030B2 (en) 2010-03-17 2012-07-31 Xerox Corporation Curl-free imaging members with a slippery surface
US8263298B1 (en) 2011-02-24 2012-09-11 Xerox Corporation Electrically tunable and stable imaging members
US8343700B2 (en) 2010-04-16 2013-01-01 Xerox Corporation Imaging members having stress/strain free layers
US8394560B2 (en) 2010-06-25 2013-03-12 Xerox Corporation Imaging members having an enhanced charge blocking layer
US8404413B2 (en) 2010-05-18 2013-03-26 Xerox Corporation Flexible imaging members having stress-free imaging layer(s)
US8465892B2 (en) 2011-03-18 2013-06-18 Xerox Corporation Chemically resistive and lubricated overcoat
US8470505B2 (en) 2010-06-10 2013-06-25 Xerox Corporation Imaging members having improved imaging layers
US8475983B2 (en) 2010-06-30 2013-07-02 Xerox Corporation Imaging members having a chemical resistive overcoat layer
US8541151B2 (en) 2010-04-19 2013-09-24 Xerox Corporation Imaging members having a novel slippery overcoat layer
US8877413B2 (en) 2011-08-23 2014-11-04 Xerox Corporation Flexible imaging members comprising improved ground strip
US9017908B2 (en) 2013-08-20 2015-04-28 Xerox Corporation Photoelectrical stable imaging members
US9017907B2 (en) 2013-07-11 2015-04-28 Xerox Corporation Flexible imaging members having externally plasticized imaging layer(s)
US9046798B2 (en) 2013-08-16 2015-06-02 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers
US9075327B2 (en) 2013-09-20 2015-07-07 Xerox Corporation Imaging members and methods for making the same
US9091949B2 (en) 2013-08-16 2015-07-28 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326128A (en) * 1976-08-23 1978-03-10 Ricoh Co Ltd Electrophotographic light sensitive
JPS5383743A (en) * 1976-12-29 1978-07-24 Konishiroku Photo Ind Co Ltd Photosensitive material for xerography
JPS5779981A (en) * 1980-11-07 1982-05-19 Fujitsu Ltd Photosensitive drum for electrophotography
JPS57161752A (en) * 1981-03-30 1982-10-05 Toray Ind Inc Electrophotographic receptor
JPS57176055A (en) * 1981-04-21 1982-10-29 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS57185046A (en) * 1981-05-08 1982-11-15 Tomoegawa Paper Co Ltd Electrophotographic receptor
JPS58162956A (en) * 1982-03-20 1983-09-27 Canon Inc Organic photoconductor
JPS5890660A (en) * 1982-07-21 1983-05-30 Canon Inc Image formation
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR960011912A (en) * 1994-09-01 1996-04-20 야마구찌 이와오 Electrophotographic photosensitive member
JPH0882946A (en) 1994-09-14 1996-03-26 Fuji Electric Co Ltd Electrophotographic photoreceptor and its production
DE69943334D1 (en) 1998-12-28 2011-05-19 Idemitsu Kosan Co METHOD FOR SELECTION OF ORGANIC COMPOUNDS FOR ORGANIC ELECTROLUMINESCENT PLANT
TW463528B (en) 1999-04-05 2001-11-11 Idemitsu Kosan Co Organic electroluminescence element and their preparation
WO2005009087A1 (en) 2003-07-02 2005-01-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
WO2005054162A1 (en) 2003-12-01 2005-06-16 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
WO2005061656A1 (en) 2003-12-19 2005-07-07 Idemitsu Kosan Co., Ltd. Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
CN1984874B (en) 2005-01-05 2012-09-26 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same
WO2007007553A1 (en) 2005-07-14 2007-01-18 Idemitsu Kosan Co., Ltd. Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
JP4848152B2 (en) 2005-08-08 2011-12-28 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP2007073814A (en) 2005-09-08 2007-03-22 Idemitsu Kosan Co Ltd Organic electroluminescence element using polyarylamine
CN101268567A (en) 2005-09-15 2008-09-17 出光兴产株式会社 Asymmetric fluorene derivative and organic electroluminescent device using the same
EP1932895A1 (en) 2005-09-16 2008-06-18 Idemitsu Kosan Co., Ltd. Pyrene derivative and organic electroluminescence device making use of the same
US20070104977A1 (en) 2005-11-07 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2007137784A (en) 2005-11-15 2007-06-07 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescence element using the same
EP1950194A1 (en) 2005-11-16 2008-07-30 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
EP1950817A1 (en) 2005-11-17 2008-07-30 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2007149941A (en) 2005-11-28 2007-06-14 Idemitsu Kosan Co Ltd Organic electroluminescensce element
CN101316826A (en) 2005-11-28 2008-12-03 出光兴产株式会社 Amine compound and organic electroluminescent element using same
EP1968131A4 (en) 2005-12-27 2009-08-19 Idemitsu Kosan Co Material for organic electroluminescent device and organic electroluminescent device
US20090021160A1 (en) 2006-02-23 2009-01-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, method for producing same and organic electroluminescent device
US20080007160A1 (en) 2006-02-28 2008-01-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
EP1990332A1 (en) 2006-02-28 2008-11-12 Idemitsu Kosan Co., Ltd. Naphthacene derivative and organic electroluminescent device using same
WO2007102361A1 (en) 2006-03-07 2007-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
KR20080105113A (en) 2006-03-27 2008-12-03 이데미쓰 고산 가부시키가이샤 Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
JPWO2007111262A1 (en) 2006-03-27 2009-08-13 出光興産株式会社 Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
KR20080105127A (en) 2006-03-30 2008-12-03 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescent device and organic electroluminescent device using the same
WO2007125714A1 (en) 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
WO2007132704A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
WO2007132678A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP1933397A4 (en) 2006-05-25 2008-12-17 Idemitsu Kosan Co Organic electroluminescent device and full color light-emitting device
CN101473464B (en) 2006-06-22 2014-04-23 出光兴产株式会社 Organic electroluminescent element using heterocyclic aromatic amine derivative
EP2042481A1 (en) 2006-06-27 2009-04-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence device using the same
WO2008015949A1 (en) 2006-08-04 2008-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20080049413A1 (en) 2006-08-22 2008-02-28 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2008023549A1 (en) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
KR20090077831A (en) 2006-11-09 2009-07-15 이데미쓰 고산 가부시키가이샤 Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device
JP2008124157A (en) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
JP2008124156A (en) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
JP5305919B2 (en) 2006-11-15 2013-10-02 出光興産株式会社 Fluoranthene compound, organic electroluminescence device using the fluoranthene compound, and solution containing organic electroluminescence material
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
JP2008166629A (en) 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd Organic-el-material-containing solution, organic el material synthesizing method, compound synthesized by the synthesizing method, method of forming thin film of organic el material, thin film of organic el material, and organic el element
US20100039027A1 (en) 2007-02-19 2010-02-18 Idemitsu Kosan Co., Ltd Organic electroluminescence device
US8278819B2 (en) 2007-03-09 2012-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and display
EP2133932A4 (en) 2007-03-23 2011-06-22 Idemitsu Kosan Co Organic el device
WO2008126802A1 (en) 2007-04-06 2008-10-23 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
KR101414914B1 (en) 2007-07-18 2014-07-04 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescent device and organic electroluminescent device
JP5475450B2 (en) 2007-08-06 2014-04-16 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP5390396B2 (en) 2007-11-22 2014-01-15 出光興産株式会社 Organic EL device and organic EL material-containing solution
KR20100088604A (en) 2007-11-30 2010-08-09 이데미쓰 고산 가부시키가이샤 Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP2295421B2 (en) 2008-05-29 2016-04-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
EP2372804B1 (en) 2008-12-26 2014-04-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and compound
EP2713415B1 (en) 2008-12-26 2018-12-19 Idemitsu Kosan Co., Ltd Material for organic electroluminescent element, and organic electroluminescent element
US9126887B2 (en) 2009-01-05 2015-09-08 Idemitsu Kosan Co., Ltd. Organic electroluminescent element material and organic electroluminescent element comprising same
US8039127B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
EP2489664A4 (en) 2009-10-16 2013-04-03 Idemitsu Kosan Co Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
JP2012028634A (en) 2010-07-26 2012-02-09 Idemitsu Kosan Co Ltd Organic electroluminescent element
EP2709183B1 (en) 2011-05-13 2019-02-06 Joled Inc. Organic electroluminescent multi-color light-emitting device
EP2754661A1 (en) 2011-09-09 2014-07-16 Idemitsu Kosan Co., Ltd Nitrogen-containing heteroaromatic ring compound
CN103827109A (en) 2011-09-28 2014-05-28 出光兴产株式会社 Material for organic electroluminescent element and organic electroluminescent element using same
JPWO2013069242A1 (en) 2011-11-07 2015-04-02 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
CN109384878B (en) * 2017-08-09 2023-01-24 江苏裕事达新材料科技有限责任公司 Blue light prevention system containing pyrazoline or/and phenylpropenoic compound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180729A (en) * 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
GB1030024A (en) * 1962-08-10 1966-05-18 Ferrania Spa Material for electrophotographic reproduction
US3384488A (en) * 1964-07-23 1968-05-21 Xcrox Corp Polychromatic photoelectrophoretic imaging composition
US3527602A (en) * 1967-08-31 1970-09-08 Eastman Kodak Co Organic photoconductors
US3535221A (en) * 1967-10-17 1970-10-20 Xerox Corp Photoelectrophoretic imaging system employing a photoconductor coating for the blocking electrode
US3549362A (en) * 1968-04-12 1970-12-22 Eastman Kodak Co Novel cyanine dyes for the sensitization of organic photoconductors
US3598582A (en) * 1967-09-18 1971-08-10 Ibm Photoconductive element exhibiting photoconductive dichroism and process of using same
US3684548A (en) * 1970-06-30 1972-08-15 Lawrence E Contois Method of preparing a homogeneous dye-sensitized electrophotographic element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180729A (en) * 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
GB1030024A (en) * 1962-08-10 1966-05-18 Ferrania Spa Material for electrophotographic reproduction
US3384488A (en) * 1964-07-23 1968-05-21 Xcrox Corp Polychromatic photoelectrophoretic imaging composition
US3527602A (en) * 1967-08-31 1970-09-08 Eastman Kodak Co Organic photoconductors
US3598582A (en) * 1967-09-18 1971-08-10 Ibm Photoconductive element exhibiting photoconductive dichroism and process of using same
US3535221A (en) * 1967-10-17 1970-10-20 Xerox Corp Photoelectrophoretic imaging system employing a photoconductor coating for the blocking electrode
US3549362A (en) * 1968-04-12 1970-12-22 Eastman Kodak Co Novel cyanine dyes for the sensitization of organic photoconductors
US3684548A (en) * 1970-06-30 1972-08-15 Lawrence E Contois Method of preparing a homogeneous dye-sensitized electrophotographic element

Cited By (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996049A (en) * 1972-08-30 1976-12-07 Hoechst Aktiengesellschaft Dual layer electrophotographic recording material
US4231799A (en) * 1972-08-30 1980-11-04 Hoechst Aktiengesellschaft Electrophotographic recording material
US3977870A (en) * 1972-09-21 1976-08-31 Hoechst Aktiengesellschaft Dual layer electrophotographic recording material
US3989520A (en) * 1972-09-21 1976-11-02 Hoechst Aktiengesellschaft Electrophotographic dual layer recording material
US3964904A (en) * 1974-08-22 1976-06-22 Xerox Corporation Manifold imaging member and process employing a dark charge injecting layer
US4012251A (en) * 1975-05-22 1977-03-15 Xerox Corporation Multi-layered photoconductive member
US4123270A (en) * 1975-09-15 1978-10-31 International Business Machines Corporation Method of making electrophotographic imaging element
US4066455A (en) * 1975-11-05 1978-01-03 Eastman Kodak Company Selenium containing multi-active photoconductive element
US4030923A (en) * 1975-12-11 1977-06-21 International Business Machines Corporation Mixture of binder materials for use in connection with a charge transport layer in a photoconductor
DE2717007A1 (en) * 1976-04-19 1977-10-20 Ricoh Kk 3- (9-FLUORENYLIDEN) CARBAZOLE DERIVATIVES, PROCESS FOR THEIR MANUFACTURING AND USE IN ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MATERIALS
US4093358A (en) * 1976-12-27 1978-06-06 International Business Machines Corporation High efficiency electrochromic display device
US4293628A (en) * 1977-01-27 1981-10-06 Ricoh Co., Ltd. Electrophotographic elements containing disazo compounds
US4279981A (en) * 1977-04-22 1981-07-21 Ricoh Company, Ltd. Electrophotographic elements containing trisazo compounds
FR2393029A1 (en) * 1977-05-31 1978-12-29 Ibm ELECTROCHROMIC DISPLAY DEVICE INCLUDING THIENYLIDENE PYRAZOLINES
US4142783A (en) * 1977-05-31 1979-03-06 International Business Machines Corporation Reversible electrochromic display device having memory
US4090782A (en) * 1977-05-31 1978-05-23 International Business Machines Corporation Electrochromic display devices comprising thienylidene pyrazoline compounds
US4251614A (en) * 1977-07-05 1981-02-17 Ricoh Company, Ltd. Novel disazo compounds, process for the preparation of same and application of said disazo compounds and analogues thereof to electrophotographic sensitive materials
US4299896A (en) * 1977-07-18 1981-11-10 Ricoh Co., Ltd. Electrophotographic sensitive materials containing a disazo pigment
US4314015A (en) * 1977-07-18 1982-02-02 Ricoh Co., Ltd. Electrophotographic sensitive materials containing disazo compounds
US4164431A (en) * 1977-08-02 1979-08-14 Eastman Kodak Company Multilayer organic photovoltaic elements
EP0001599A1 (en) * 1977-10-17 1979-05-02 International Business Machines Corporation Electrophotographic recording material and its application in a copying process
US4363859A (en) * 1977-10-22 1982-12-14 Ricoh Company, Ltd. Electrophotographic photoconductor
US4278746A (en) * 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
US4435492A (en) 1978-10-27 1984-03-06 Hitachi, Ltd. Complex type electrophotographic plate and electrophotographic method using the same
US4247614A (en) * 1978-11-20 1981-01-27 Ricoh Co., Ltd. Electrophotographic element containing a disazo pigment
US4268596A (en) * 1978-11-27 1981-05-19 Ricoh Company, Ltd. Electrophotographic element having 1,4-bis(azostyryl)-2,5 dimethoxy benzene compounds as photoconductors
US4348470A (en) * 1978-12-13 1982-09-07 Ricoh Co., Ltd. Electrophotographic element containing disazo compounds
US4281053A (en) * 1979-01-22 1981-07-28 Eastman Kodak Company Multilayer organic photovoltaic elements
US4314016A (en) * 1979-06-20 1982-02-02 Ricoh Co., Ltd. Electrophotographic element having a bisazo photoconductor
US4302521A (en) * 1979-07-16 1981-11-24 Konishiroku Photo Industry Co., Ltd. Photosensitive element for electrophotography
US4315982A (en) * 1979-08-23 1982-02-16 Copyer Co., Ltd. Styryl pyrazoline compounds, process for production thereof, and electrophoto graphic material comprising said compounds
US4349617A (en) * 1979-10-23 1982-09-14 Fuji Photo Film Co., Ltd. Function separated type electrophotographic light-sensitive members and process for production thereof
US4307167A (en) * 1980-03-03 1981-12-22 International Business Machines Corporation Layered electrophotographic plate having tetramethyl benzidene based disazo dye
US4369242A (en) * 1980-09-25 1983-01-18 Minnesota Mining And Manufacturing Company Non-porous and porous Al2 O3 barrier zones in layered electrophotographic device
US4554231A (en) * 1980-09-26 1985-11-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US4423129A (en) * 1980-12-17 1983-12-27 Canon Kabushiki Kaisha Electrophotographic member having layer containing methylidenyl hydrazone compound
US4446217A (en) * 1981-02-03 1984-05-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member having a hydrazone containing layer
US4418133A (en) * 1981-03-27 1983-11-29 Canon Kabushiki Kaisha Disazo photoconductive material and electrophotographic photosensitive member having disazo pigment layer
US4769304A (en) * 1981-04-27 1988-09-06 Fuji Photo Film Co., Ltd. Photoconductive composition and electro-photographic light-sensitive material using said composition
US4362798A (en) * 1981-05-18 1982-12-07 International Business Machines Corporation Hydrazone and pyrazoline or acetosol yellow containing charge transport layer, photoconductor and electrophotographic process using the same
US4413045A (en) * 1981-05-26 1983-11-01 Canon Kabushiki Kaisha Multilayer electrophotographic photosensitive member comprises disazo charge generator layer, hydrazone transport layer
US4454211A (en) * 1981-06-10 1984-06-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member with pyrazoline charge transport material
US4399207A (en) * 1981-07-31 1983-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member with hydrazone compound
US4456671A (en) * 1981-12-23 1984-06-26 Canon Kabushiki Kaisha Electrophotographic photosensitive member having a photosensitive layer containing a hydrazone compound
US4543310A (en) * 1982-01-29 1985-09-24 Oce-Nederland B.V. Electrophotographic element and photocopying process making use of certain 4-[bis-phenylamino]benzaldehyde azines
US4487824A (en) * 1982-05-17 1984-12-11 Canon Kabushiki Kaisha Electrophotographic photosensitive member containing a halogen substituted hydrazone
EP0096989A2 (en) * 1982-05-26 1983-12-28 Toray Industries, Inc. Electrophotographic photosensitive material
EP0096989A3 (en) * 1982-05-26 1984-11-14 Toray Industries, Inc. Electrophotographic photosensitive material
DE3331592A1 (en) 1982-09-01 1984-03-01 Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa DISAZO CONNECTIONS AND PHOTO-CONDUCTIVE COMPOSITIONS CONTAINING THEM AND ELECTROPHOTOGRAPHIC LIGHT-SENSITIVE RECORDING MATERIALS
US4567125A (en) * 1982-12-09 1986-01-28 Hoechst Aktiengesellschaft Electrophotographic recording material
US4588667A (en) * 1984-05-15 1986-05-13 Xerox Corporation Electrophotographic imaging member and process comprising sputtering titanium on substrate
US4762760A (en) * 1986-02-01 1988-08-09 Hoechst Aktiengesellschaft Electrophotographic recording material comprising a pyrazoline derivative
DE3730258A1 (en) * 1986-09-10 1988-04-07 Canon Kk ELECTROPHOTOGRAPHIC LIGHT SENSITIVE RECORDING MATERIAL, 5H-DIBENZO (A, D) CYCLOHEPTANYLIDEN DERIVATIVE, 5H-DIBENZO (A, D) CYCLOHEPTENYLIDEN DERIVATIVE AND METHOD FOR THE PRODUCTION THEREOF
US4931371A (en) * 1987-11-24 1990-06-05 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US4883731A (en) * 1988-01-04 1989-11-28 Xerox Corporation Imaging system
US5032479A (en) * 1988-06-21 1991-07-16 Kao Corporation Ion transport photoreceptor for electrophotography
US5262261A (en) * 1988-12-29 1993-11-16 Canon Kabushiki Kaisha Photosensitive member for electrophotography
US5079118A (en) * 1989-01-20 1992-01-07 Canon Kabushiki Kaisha Photosensitive member for electrophotography with substituted pyrene
US5116709A (en) * 1989-06-13 1992-05-26 Industrial Technology Research Institute Electrophotoreceptor using styrene-maleic anhydride copolymer as the polymeric binder
US5120628A (en) * 1989-12-12 1992-06-09 Xerox Corporation Transparent photoreceptor overcoatings
US5215842A (en) * 1990-01-08 1993-06-01 Hitachi, Ltd. Photosensitive element for electrophotography
US5466550A (en) * 1991-02-08 1995-11-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus, device unit and facsimile machine using the same
US5324608A (en) * 1992-11-23 1994-06-28 Mitsubishi Kasei America, Inc. Photoconductor drum, having a non-conductive layer, with an area of electrical contact and method of manufacturing the same
US5554473A (en) * 1994-11-23 1996-09-10 Mitsubishi Chemical America, Inc. Photoreceptor having charge transport layers containing a copolycarbonate and layer containing same
US5876890A (en) * 1996-05-27 1999-03-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member and apparatus and process cartridge provided with the same
US5935747A (en) * 1996-06-07 1999-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member
US5876888A (en) * 1996-07-04 1999-03-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and apparatus and process cartridge provided with the same
US5952142A (en) * 1997-07-31 1999-09-14 Oce-Technologies, B.V. Azine-containing photoconductive element
US6093515A (en) * 1997-08-29 2000-07-25 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6146800A (en) * 1997-10-17 2000-11-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6180302B1 (en) 1997-10-27 2001-01-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus provided with the electrophotographic member
US6017665A (en) * 1998-02-26 2000-01-25 Mitsubishi Chemical America Charge generation layers and charge transport layers and organic photoconductive imaging receptors containing the same, and method for preparing the same
US6405005B1 (en) 1998-04-30 2002-06-11 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus
US6410195B1 (en) 1999-08-12 2002-06-25 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6703174B2 (en) 2001-01-31 2004-03-09 Canon Kabushiki Kaisha Electrophotographic apparatus and process cartridge
EP1515191A2 (en) 2003-09-05 2005-03-16 Xerox Corporation Dual charge transport layer and photoconductive imaging member including the same
US7642028B2 (en) 2005-03-17 2010-01-05 Xerox Corporation Imaging members
US20060284194A1 (en) * 2005-06-20 2006-12-21 Xerox Corporation Imaging member
US7541123B2 (en) 2005-06-20 2009-06-02 Xerox Corporation Imaging member
US7361440B2 (en) 2005-08-09 2008-04-22 Xerox Corporation Anticurl backing layer for electrostatographic imaging members
US20070037081A1 (en) * 2005-08-09 2007-02-15 Xerox Corporation Anticurl backing layer for electrostatographic imaging members
US20070059623A1 (en) * 2005-09-15 2007-03-15 Xerox Corporation Anticurl back coating layer for electrophotographic imaging members
US20070059622A1 (en) * 2005-09-15 2007-03-15 Xerox Corporation Mechanically robust imaging member overcoat
US7504187B2 (en) 2005-09-15 2009-03-17 Xerox Corporation Mechanically robust imaging member overcoat
US7422831B2 (en) 2005-09-15 2008-09-09 Xerox Corporation Anticurl back coating layer electrophotographic imaging members
WO2007038425A2 (en) * 2005-09-27 2007-04-05 Regents Of The University Of Minnesota Anti-viral compouinds
WO2007038425A3 (en) * 2005-09-27 2007-10-25 Univ Minnesota Anti-viral compouinds
US7462434B2 (en) 2005-12-21 2008-12-09 Xerox Corporation Imaging member with low surface energy polymer in anti-curl back coating layer
US20070141493A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Imaging member
US20070141487A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Imaging member
US7455941B2 (en) 2005-12-21 2008-11-25 Xerox Corporation Imaging member with multilayer anti-curl back coating
US7754404B2 (en) 2005-12-27 2010-07-13 Xerox Corporation Imaging member
US20070148575A1 (en) * 2005-12-27 2007-06-28 Xerox Corporation Imaging member
US20070148573A1 (en) * 2005-12-27 2007-06-28 Xerox Corporation Imaging member
US7517624B2 (en) 2005-12-27 2009-04-14 Xerox Corporation Imaging member
US8268457B2 (en) 2006-06-05 2012-09-18 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
US20090167167A1 (en) * 2006-06-05 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
US7527906B2 (en) 2006-06-20 2009-05-05 Xerox Corporation Imaging member having adjustable friction anticurl back coating
US20070292797A1 (en) * 2006-06-20 2007-12-20 Xerox Corporation Imaging member having adjustable friction anticurl back coating
US7582399B1 (en) 2006-06-22 2009-09-01 Xerox Corporation Imaging member having nano polymeric gel particles in various layers
US20090239166A1 (en) * 2006-06-22 2009-09-24 Xerox Corporation Imaging member having nano polymeric gel particles in various layers
US7524597B2 (en) 2006-06-22 2009-04-28 Xerox Corporation Imaging member having nano-sized phase separation in various layers
US20070298340A1 (en) * 2006-06-22 2007-12-27 Xerox Corporation Imaging member having nano-sized phase separation in various layers
US7704658B2 (en) 2006-06-22 2010-04-27 Xerox Corporation Imaging member having nano polymeric gel particles in various layers
US20080050665A1 (en) * 2006-08-23 2008-02-28 Xerox Corporation Imaging member having high molecular weight binder
US7767373B2 (en) 2006-08-23 2010-08-03 Xerox Corporation Imaging member having high molecular weight binder
US20090253060A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US7943278B2 (en) 2008-04-07 2011-05-17 Xerox Corporation Low friction electrostatographic imaging member
US20090253059A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253058A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US20090253056A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US8021812B2 (en) 2008-04-07 2011-09-20 Xerox Corporation Low friction electrostatographic imaging member
US8007970B2 (en) 2008-04-07 2011-08-30 Xerox Corporation Low friction electrostatographic imaging member
US8084173B2 (en) 2008-04-07 2011-12-27 Xerox Corporation Low friction electrostatographic imaging member
US7998646B2 (en) 2008-04-07 2011-08-16 Xerox Corporation Low friction electrostatographic imaging member
US20110176831A1 (en) * 2008-04-07 2011-07-21 Xerox Corporation Low friction electrostatographic imaging member
US8026028B2 (en) 2008-04-07 2011-09-27 Xerox Corporation Low friction electrostatographic imaging member
US20090253063A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US8263301B2 (en) 2008-04-07 2012-09-11 Xerox Corporation Low friction electrostatographic imaging member
US8232032B2 (en) 2008-04-07 2012-07-31 Xerox Corporation Low friction electrostatographic imaging member
US20090253062A1 (en) * 2008-04-07 2009-10-08 Xerox Corporation Low friction electrostatographic imaging member
US8168356B2 (en) 2009-05-01 2012-05-01 Xerox Corporation Structurally simplified flexible imaging members
US8173341B2 (en) 2009-05-01 2012-05-08 Xerox Corporation Flexible imaging members without anticurl layer
US8124305B2 (en) 2009-05-01 2012-02-28 Xerox Corporation Flexible imaging members without anticurl layer
US20100279219A1 (en) * 2009-05-01 2010-11-04 Xerox Corporation Flexible imaging members without anticurl layer
US20100279217A1 (en) * 2009-05-01 2010-11-04 Xerox Corporation Structurally simplified flexible imaging members
US20100279218A1 (en) * 2009-05-01 2010-11-04 Xerox Corporation Flexible imaging members without anticurl layer
US20100297544A1 (en) * 2009-05-22 2010-11-25 Xerox Corporation Flexible imaging members having a plasticized imaging layer
EP2253998A1 (en) 2009-05-22 2010-11-24 Xerox Corporation Flexible imaging members having a plasticized imaging layer
US20100302169A1 (en) * 2009-06-01 2010-12-02 Apple Inc. Keyboard with increased control of backlit keys
US20100304285A1 (en) * 2009-06-01 2010-12-02 Xerox Corporation Crack resistant imaging member preparation and processing method
US8278017B2 (en) 2009-06-01 2012-10-02 Xerox Corporation Crack resistant imaging member preparation and processing method
US20110053068A1 (en) * 2009-08-31 2011-03-03 Xerox Corporation Flexible imaging member belts
EP2290450A1 (en) 2009-08-31 2011-03-02 Xerox Corporation Flexible imaging member belts
US8241825B2 (en) 2009-08-31 2012-08-14 Xerox Corporation Flexible imaging member belts
EP2290449A1 (en) 2009-08-31 2011-03-02 Xerox Corporation Flexible imaging member belts
US20110053069A1 (en) * 2009-08-31 2011-03-03 Xerox Corporation Flexible imaging member belts
US8003285B2 (en) 2009-08-31 2011-08-23 Xerox Corporation Flexible imaging member belts
US20110136049A1 (en) * 2009-12-08 2011-06-09 Xerox Corporation Imaging members comprising fluoroketone
US8232030B2 (en) 2010-03-17 2012-07-31 Xerox Corporation Curl-free imaging members with a slippery surface
US8343700B2 (en) 2010-04-16 2013-01-01 Xerox Corporation Imaging members having stress/strain free layers
US8541151B2 (en) 2010-04-19 2013-09-24 Xerox Corporation Imaging members having a novel slippery overcoat layer
US8404413B2 (en) 2010-05-18 2013-03-26 Xerox Corporation Flexible imaging members having stress-free imaging layer(s)
US8470505B2 (en) 2010-06-10 2013-06-25 Xerox Corporation Imaging members having improved imaging layers
US8394560B2 (en) 2010-06-25 2013-03-12 Xerox Corporation Imaging members having an enhanced charge blocking layer
US8475983B2 (en) 2010-06-30 2013-07-02 Xerox Corporation Imaging members having a chemical resistive overcoat layer
US8263298B1 (en) 2011-02-24 2012-09-11 Xerox Corporation Electrically tunable and stable imaging members
US8465892B2 (en) 2011-03-18 2013-06-18 Xerox Corporation Chemically resistive and lubricated overcoat
US8877413B2 (en) 2011-08-23 2014-11-04 Xerox Corporation Flexible imaging members comprising improved ground strip
US9017907B2 (en) 2013-07-11 2015-04-28 Xerox Corporation Flexible imaging members having externally plasticized imaging layer(s)
US9046798B2 (en) 2013-08-16 2015-06-02 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers
US9091949B2 (en) 2013-08-16 2015-07-28 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers
US9482969B2 (en) 2013-08-16 2016-11-01 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers
US9017908B2 (en) 2013-08-20 2015-04-28 Xerox Corporation Photoelectrical stable imaging members
US9075327B2 (en) 2013-09-20 2015-07-07 Xerox Corporation Imaging members and methods for making the same

Also Published As

Publication number Publication date
FR2214139B1 (en) 1977-06-10
DE2401219C3 (en) 1975-11-27
DE2401219B2 (en) 1975-03-27
DE2401219A1 (en) 1974-07-25
FR2214139A1 (en) 1974-08-09
JPS592023B2 (en) 1984-01-17
CA1005674A (en) 1977-02-22
BE809704A (en) 1974-05-02
CH579789A5 (en) 1976-09-15
NL7400140A (en) 1974-07-17
IT1001106B (en) 1976-04-20
JPS49105537A (en) 1974-10-05

Similar Documents

Publication Publication Date Title
US3837851A (en) Photoconductor overcoated with triarylpyrazoline charge transport layer
US5077161A (en) Imaging members with bichromophoric bisazo perylene photoconductive materials
US3824099A (en) Sensitive electrophotographic plates
US3977870A (en) Dual layer electrophotographic recording material
US3684548A (en) Method of preparing a homogeneous dye-sensitized electrophotographic element
US3533783A (en) Light adapted photoconductive elements
US5055367A (en) Imaging members with bichromophoric bisazo perinone photoconductive materials
US3554745A (en) Electrophotographic composition and element
US4481270A (en) Photoreceptor containing squaric acid methine dyes
US4465753A (en) Indoline electrophotoconductor
JPH0374833B2 (en)
JPS6045253A (en) Photosensitive electrophotographic plate containing squaric acid methine dye dispersing in binder
US4567125A (en) Electrophotographic recording material
US3912507A (en) Polyrhodanine photoconductive materials
US3814600A (en) Electrophotographic element
US4661428A (en) Composite photosensitive elements for use in electrophotography and process of forming images using same
US4370398A (en) Electrostatic copying process
JP3727119B2 (en) Organic single-layer photoconductor for electrophotography
US4869986A (en) Multiactive electrophotographic element
US3552958A (en) Electrophotographic composition and element
JP2867561B2 (en) Function-separated photoconductor
JPS62121460A (en) Electrophotographic sensitive body
US4869987A (en) Multiactive electrophotographic reusable element
US3755310A (en) Substituted bis(p-dialkylaminophenyl)methane photoconductors
JPS6059589B2 (en) electrophotographic photoreceptor